Принцип действия
Анализатор транзисторов.
МОП и биполярные транзисторы работают по-разному:
- Биполярный транзистор
- В усилителе тока в пространство база / эмиттер вводится ток, чтобы создать ток, умноженный на коэффициент усиления транзистора между эмиттером и коллектором. Эти биполярные транзисторы NPN (отрицательный-положительный-отрицательный) , которые оставляют циркулирующий ток базы (+) к передатчику (-), быстрее и имеют более высокого выдерживаемое напряжение , чем основание PNP транзисторы (-) передатчик (+), но могут быть производимые производителями с дополнительными характеристиками для приложений, требующих этого.
- Полевой транзистор
- Его управляющий орган — ворота . Для этого требуется только напряжение (или потенциал) между затвором и истоком, чтобы управлять током между истоком и стоком. В статическом режиме ток затвора равен нулю (или незначителен), поскольку затвор ведет себя по отношению к цепи управления как конденсатор малой емкости. Есть несколько типов полевого транзистора: истощение , обогащение (на сегодняшний день самая многочисленная) и ответвительные (JFET) транзисторов . В каждом семействе можно использовать канал либо N-типа, либо P-типа, что, таким образом, составляет в общей сложности шесть различных типов. — Для истощающих транзисторов, а также для полевых транзисторов, канал сток-исток является проводящим, если потенциал затвора равен нулю. Чтобы заблокировать его, этот потенциал нужно сделать отрицательным (для каналов N) или положительным (для каналов P). — И наоборот, обогащающие транзисторы блокируются, когда затвор имеет нулевой потенциал. Если на затвор транзистора N смещается положительное напряжение, а на затвор транзистора P — отрицательное напряжение, пространство исток-сток транзистора становится проводящим.
Каждый из этих транзисторов характеризуется пороговым напряжением, соответствующим напряжению на затворе, которое обеспечивает переход между заблокированным поведением транзистора и его проводящим поведением. В отличие от биполярных транзисторов, пороговое напряжение которых зависит только от используемого полупроводника (кремний, германий или As-Ga), пороговое напряжение полевых транзисторов сильно зависит от технологии и может значительно меняться даже во времени внутри одной партии. N-канальный обедненный полевой транзистор — это полупроводник, характеристики которого больше всего напоминают старые электронные лампы (триоды). При одинаковой мощности N транзисторов меньше P. При одинаковой геометрии N транзисторов также быстрее, чем P. Действительно, большинство носителей в N-канале — электроны , которые движутся лучше, чем дырки , преимущественно в P-канале. Таким образом, канал N больше, чем канал P того же размера.
В большинстве цифровых интегральных схем (в частности, микропроцессоров ) используется технология CMOS, которая позволяет интегрировать в большом масштабе (несколько миллионов) дополнительные полевые (обогащающие) транзисторы (то есть можно найти N и P). Для той же функции интеграция биполярных транзисторов потребовала бы гораздо больше тока. Действительно, схема CMOS потребляет ток только во время переключений. Потребление CMOS-затвора — это только электрический заряд, необходимый для зарядки его выходной емкости . Поэтому их рассеяние почти равно нулю при умеренной тактовой частоте; это позволяет разрабатывать схемы элементов или батарей (телефоны или ноутбуки, камеры и т. д.).
- Другие транзисторы
- IGBT ( биполярный транзистор с изолированным затвором ): гибрид, который имеет характеристики полевого транзистора на входе и характеристики биполярного транзистора на выходе. Используется только в силовой электронике .
- Однопереходный транзистор: этот транзистор используется из-за его характеристик отрицательного динамического сопротивления, что позволяет просто реализовать генератор. В настоящее время больше не используется.
- Фототранзистор: это биполярный транзистор, переход база-коллектор которого чувствителен к свету. По сравнению с фотодиодом , он более чувствителен, поскольку имеет эффект усиления, свойственный транзистору.
- Оптоизолятор : фототранзистор устанавливаются в том же блоке, в светоизлучающем диоде . Это свет передает сигналы между фототранзистором и светодиодом. Очень высокая изоляционная мощность (около 5 кВ ) делает его идеальным компонентом для гальванической развязки цепи управления от силовой цепи. Также существуют оптоизоляторы, использующие другие выходные компоненты, такие как тиристор , симистор .
Виды транзисторов
Существует несколько видов транзисторов. Их около четырёх. Однако основные из них это:
- Полевые.
- Биполярные.
Остальные виды собираются из полевых и биполярных. Рассмотрим более подробно каждый вид.
Полевые
Суть этого прибора заключается в управлении параметрами электрического сигнала с помощью электрического поля. Оно появляется при подаче напряжения к какому-либо из выводов:
- Затвор нужен для регулирования параметров сигнала, благодаря подаче напряжения на него.
- Сток — вывод, через который из канала уходят носители заряда (дырки и электроны).
- Исток — вывод, через который в канал приходят электроны и дырки.
Такой транзистор состоит из полупроводника с определённой проводимостью и двух областей, помещённых в него с противоположной проводимостью. При подаче напряжения на затвор между этими двумя областями появляется пространство, через которое протекает ток. Это пространство называется каналом. Ширина этого канала регулируется напряжением, которое мы подаём на затвор. Соответственно, можно увеличивать и уменьшать ширину канала и управлять протекающим током.
Теперь поговорим о приборе с изолированным затвором. Разница в том, что в первом случае этот переход есть всегда, даже когда на затвор не подавалось напряжение. А при его подаче, переход и токопроводящий канал менялись в зависимости от полярности и амплитуды напряжения. Металлический затвор в таких транзисторах изолирован диэлектриком от полупроводниковой области. Их входное сопротивление гораздо больше.
Существует два вида приборов с изолированным затвором:
- Со встроенным каналом.
- С индуцированным каналом.
Встроенный канал позволяет протекать электрическому току с определённой амплитудой. При подаче напряжения с определённой амплитудой и полярностью мы можем менять ширину канала и его проводимость. Этот канал встраивается в транзисторы на производственных предприятиях.
Индуцированный канал появляется между двумя областями, о которых мы говорили выше, только при подаче напряжения определённой полярности на затвор. То есть, когда на затвор напряжение не подаётся, ток в нем не протекает.
Все виды полевых транзисторов отличаются друг от друга по следующим параметрам:
- Входное сопротивление.
- Амплитуда напряжения, которое необходимо подать на затвор.
- Полярность.
Каждый из этих видов полевых транзисторов необходим для сборки определённых электрических и логических схем. Так как для реализации двух разных устройств необходимо разные электрические параметры.
Биполярные
Слово «биполярные» означает две полярности. То есть, такие приборы имеют две полярности, благодаря особенностям своего строения. Особенность их строения заключается в том, что они состоят из трёх полупроводниковых областей. Типы проводимости бывают следующими:
- Электронная, далее n.
- Дырочная, далее p.
Соответственно, можно сделать вывод, что существует два вида биполярных транзисторов:
- pnp;
- npn.
Разница между ними заключается в том, что для корректной работы необходимо подавать напряжение разной полярности. К каждой из трёх полупроводниковых областей подключено по одному выводу. Всего их три:
- База — центральный слой. Он является самым тонким. На выводе базы находится управляющий ток с небольшой амплитудой.
- Коллектор — один из крайних слоёв. Он является самым широким. На него подаётся ток с большой амплитудой.
- Эмиттер — вывод, на который подаётся ток с коллектора. На его выходе амплитуда тока немного больше, чем на входе.
Существует три схемы подключения биполярных транзисторов:
- С общим эмиттером — входной сигнал подаётся на базу, а выходной снимается с коллектора.
- С общим коллектором — входной сигнал подаётся на базу, а снимается с эмиттера.
- С общей базой — входной сигнал подаётся на эмиттер, а снимается с коллектора.
Благодаря нескольким электронно-дырочным переходам, образующимся в биполярном транзисторе, можно управлять параметрами электрического сигнала. Полярность и амплитуда подаваемого напряжения зависят от типа биполярного транзистора.
Полевой транзистор с изолированным затвором
Устройство полевого транзистора с изолированным затвором
У полевого транзистора этого типа основу кристалла составляет слабо легированная зона n. Она называется подложкой. В ней созданы сильнолегированные зоны p (то есть там много основных носителей заряда) и тонкий канал между ними. А затвор вообще изолирован — он отделён от канала тонким слоем диэлектрика. Структура затвора дала название этому виду транзисторов: МДП (металл-диэлектрик-полупроводник). Ещё их иногда называют МОП (металл-окисел-полупроводник), поскольку в качестве диэлектрика обычно используется слой диоксида кремния. Ну а по-английски это MOSFET (Metal-Oxid-Semiconductor-Field-Effect-Transistor).
Если предыдущий тип полевых транзисторов работал только при запирающих напряжениях на затворе, то МОП-транзисторы могут работать и при положительном и при отрицательном смещении.
Если приложить к затвору «плюс», он начнёт выталкивать из канала основные носители заряда (которыми, как мы помним, в зоне p являются дырки), тем самым повышая его сопротивление. Это режим обеднения. И, наоборот, минус на затворе притянет в канал некоторое дополнительное количество положительных зарядов из подложки, сопротивление канала уменьшится. Это режим обогащения .
Вы вправе спросить: откуда же в подложке положительные заряды (дырки), если она сделана из полупроводника типа n, с электронной проводимостью? Да, положительные заряды не являются основными в подложке. Но, как уже говорилось, она легирована слабо, и поэтому неосновных зарядов там достаточное количество, чтобы обогатить канал.
Прибор, который мы сейчас рассматриваем, называется МОП-транзистором со встроенным каналом. Но, оказывается, «физический» канал можно совсем убрать. В этом случае мы получим транзистор с индуцированным каналом.
МОП-транзистор с индуцированным каналом
Как же в этом случае идёт ток? Принцип тот же: минус на затворе притянет неосновные носители, положительно заряженные дырки. Так что они образуют небольшую область с положительной проводимостью — то есть «виртуальный» канал, который соединит исток и сток. И то, что их притянуло поле, перпендикулярное направлению канала, не мешает им двигаться вдоль канала, создавая электрический ток. Это как красивая витрина притягивает случайных прохожих, но не мешает им двигаться вдоль витрины.
Отметим, что входное сопротивление МОП-транзисторов ещё на несколько порядков выше, чем транзисторов с управляющим p-n-переходом, так как затвор физически отделён слоем диэлектрика, и токи затвора ничтожны.
Замена датчиков
Как я уже писал, есть принципиально 4 вида датчиков с транзисторным выходом, которые подразделяются по внутреннему устройству и схеме включения:
- PNP NO
- PNP NC
- NPN NO
- NPN NC
Все эти типы датчиков можно заменить друг на друга, т.е. они взаимозаменяемы.
Это реализуется такими способами:
- Переделка устройства инициации — механически меняется конструкция.
- Изменение имеющейся схемы включения датчика.
- Переключение типа выхода датчика (если имеются такие переключатели на корпусе датчика).
- Перепрограммирование программы — изменение активного уровня данного входа, изменение алгоритма программы.
Ниже приведён пример, как можно заменить датчик PNP на NPN, изменив схему подключения:
PNP-NPN замена. Слева — исходная схема, справа — переделанная.
Понять работу этих схем поможет осознание того факта, что транзистор — это ключевой элемент, который можно представить обычными контактами реле (примеры — ниже, в обозначениях).
Итак, схема слева. Предположим, что тип датчика — НО. Тогда (независимо от типа транзистора на выходе), когда датчик не активен, его выходные «контакты» разомкнуты, и ток через них не протекает. Когда датчик активен, контакты замкнуты, со всеми вытекающими последствиями. Точнее, с протекающим током через эти контакты)). Протекающий ток создает падение напряжения на нагрузке.
Внутренняя нагрузка показана пунктиром неспроста. Этот резистор существует, но его наличие не гарантирует стабильную работу датчика, датчик должен быть подключен к входу контроллера или другой нагрузке. Сопротивление этого входа и является основной нагрузкой.
Так вот, в схеме с PNP выходом при активации напряжение (+V) через открытый транзистор поступает на вход контроллера, и он активизируется. Как того же добиться с выходом NPN?
Смотрим на изменения в схеме справа. Прежде всего, обеспечен режим работы выходного транзистора датчика. Для этого в схему добавлен дополнительный резистор, его сопротивление обычно порядка 5,1 — 10 кОм. Теперь, когда датчик не активен, через дополнительный резистор напряжение (+V) поступает на вход контроллера, и вход контроллера активизируется. Когда датчик активен — на входе контроллера дискретный «0», поскольку вход контроллера шунтируется открытым NPN транзистором, и почти весь ток дополнительного резистора проходит через этот транзистор.
Да, не совсем то, что мы хотели. В данном случае происходит перефазировка работы датчика. Зато датчик работает в режиме, и контроллер получает информацию. В большинстве случаев этого достаточно. Например, в режиме подсчета импульсов — тахометр, или количество заготовок.
Как добиться полного функционала? Способ 1 — механически сдвинуть либо переделать металлическую пластинку (активатор). Либо световой промежуток, если речь идёт об оптическом датчике. Способ 2 — перепрограммировать вход контроллера чтобы дискретный «0» был активным состоянием контроллера, а «1» — пассивным. Если под рукой есть ноутбук, то второй способ и быстрее, и проще.
Принцип работы транзистора
В самом простом случае работу транзистора можно описать следующим образом. Транзистор можно представить в виде управляемого сопротивления, то есть выводы сопротивления это коллектор и эммитер, а управлять этим сопротивлением можно с помощью базы, подавая на неё ток. И в зависимости от величины тока сопротивление участка коллектор – эммитер будет менять своё значение. В действительности всё немного сложнее здесь мы не учитываем частотные свойства, но в общем случае всё выше описанное верно.
Давайте разберёмся подробнее в работе транзистора. Вначале необходимо сказать о полярности включения, то есть куда подключить «плюс», а куда – «минус». На принципиальных схемах обозначение транзистора имеет следующий вид.

Обозначение на схеме биполярного транзистора и их диодное представление.
На обозначении направление стрелки указывает на направление протекания тока. В качестве примера возьмём транзистор структуры p-n-p. В данном случае ток протекает от эммитера к коллектору, через базовую зону транзистора. Используя схему транзистора как объединение двух диодов можно видеть, что диод с выходом на коллектор включён в обратном направлении и его сопротивление очень велико. А диод с выходом на эммитер включен в прямом направлении и его сопротивление небольшое, и через него идет ток. В случае если бы это были два диода соединенные выводами, то на этом можно было бы и закончить разговор, но так как это транзистор и у него имеется общая зона двух p-n-переходов, то происходит такой процесс как диффузия. Диффузия, в общих чертах, это процесс распространения одного вещества в другом.
Так вот за счёт диффузии свободные положительные заряды – «дырки» быстро распространяются по всей базовой зоне, а следовательно попадают в зону коллекторного p-n-перехода, а далее «минус» на коллекторе притягивает «дырки» и в результате чего начинает течь электрический ток. В случае же если мы начнём подавать ток на базу, то следовательно будет изменяться величина p-n-переходов: эммитерного и коллекторного.
Полевой транзистор с управляющим p-n переходом
Прежде, чем начать, сделаю важное замечание. Устройство полевых транзисторов – довольно сложная тема
Поэтому, предполагается, что читатель ориентируется в свойствах полупроводников, а также знаком с принципом работы полупроводникового диода и биполярного транзистора. А теперь, в путь!
Давайте возьмём и сделаем из биполярного транзистора полевой:
Устройство биполярного транзистора и полевого транзистора с управляющим p-n-переходом
Итак, здесь у нас появился канал, соединяющий исток и сток (аналоги эмиттера и коллектора). Хоть это и полу-, но всё же проводник, сопротивление у него небольшое. Значит, если к затвору (управляющему электроду) не приложен никакой потенциал, ток через полевой транзистор всё равно будет течь
Обратите внимание, здесь ток создаётся носителями одного типа, в данном примере, дырками. Поэтому полевые транзисторы иногда ещё называют униполярными. В отличие от биполярных, в которых в создании тока всегда участвуют оба типа зарядов
Теперь посмотрим, что будет, если на затвор подать положительное (относительно истока) напряжение. Это будет запирающее напряжение. Как мы видели в полупроводниковых диодах, такое напряжение оттягивает носители зарядов от зоны p-n-перехода. Это значит, что в p-канале расширяется область, обеднённая зарядами, его сопротивление растёт. Это похоже на то, как в трубу вставили заслонку, которая перекрыла часть сечения трубы и поток воды уменьшился.
Принцип работы полевого транзистора с управляющим p-n переходом.
На рисунке обеднённая зарядами область заштрихована зелёным. Она неравномерная, расширяется к стоку потому, что кроме потенциала затвора на распределение зарядов ещё влияет потенциал исток-сток.
Если к затвору приложить достаточно большое напряжение, можно вообще вытолкнуть из канала практически все дырки. Ток через канал прекратится. Это называется режимом отсечки.
Далее мы ещё поговорим об особенностях и преимуществах полевых транзисторов, а пока обратим внимание на один ключевой момент. Ток затвора очень мал
Ведь, по сути, это диод, включенный в обратной полярности, в котором ток могут создавать случайные неосновные носители, которых очень мало.
В биполярном транзисторе управление шло током: чем больше ток через эмиттерный переход, чем больше зарядов попадает в область базы, тем больше их захватывается коллектором и создаёт коллекторный ток. В полевом же транзисторе управление идёт не током, а напряжением: чем больше потенциал, тем больше сопротивление канала.
То есть, напряжение на затворе может меняться значительно, а ток затвора при этом меняется очень слабо. Это означает высокое входное сопротивление. Если у биполярного транзистора входное сопротивление измеряется килоомами, то в данном типе полевых транзисторов оно составляет десятки и сотни мегаом.
Разумеется, можно сделать и «зеркальный» полевой транзистор с управляющим p-n переходом: с каналом n-типа и зоной p на затворе. Принцип работы будет тот же самый, только знаки напряжений поменяются на противоположные.
Да, англоязычное обозначение этого типа транзисторов – JFET (Junction-Field-Effect-Transistor). И раз уж заговорили об английском, приведём название выводов: G-gate-затвор, D-drain-сток, S-source-исток
Ну а мы переходим к следующему классу приборов:
Управление индуктивной нагрузкой
При управлении индуктивной нагрузкой, такой как электродвигатель, или
при наличии помех в сети напряжение может стать достаточно большим,
чтобы симистор самопроизвольно открылся. Для борьбы с этим явлением в
схему необходимо добавить снаббер – это сглаживающий конденсатор и
резистор параллельно симистору.
Снаббер не сильно улучшает ситуацию с выбросами, но с ним лучше, чем
без него.
Керамический конденсатор дожен быть рассчитан на напряжение,
большее пикового в сети питания. Ещё раз вспомним, что для 220 В – это
310 В. Лучше брать с запасом.
Типичные значения: $C_1 = 0{,}01\,мкФ$, $R_4 = 33\,Ом$.
Есть также модели симисторов, которым не требуется снаббер. Например,
BTA06-600C.
Транзистор Дарлингтона
Если нагрузка очень мощная, то ток через неё может достигать
нескольких ампер. Для мощных транзисторов коэффициент $\beta$ может
быть недостаточным. (Тем более, как видно из таблицы, для мощных
транзисторов он и так невелик.)
В этом случае можно применять каскад из двух транзисторов. Первый
транзистор управляет током, который открывает второй транзистор. Такая
схема включения называется схемой Дарлингтона.
В этой схеме коэффициенты $\beta$ двух транзисторов умножаются, что
позволяет получить очень большой коэффициент передачи тока.
Для повышения скорости выключения транзисторов можно у каждого соединить
эмиттер и базу резистором.
Сопротивления должны быть достаточно большими, чтобы не влиять на ток
база – эмиттер. Типичные значения – 5…10 кОм для напряжений 5…12 В.
Выпускаются транзисторы Дарлингтона в виде отдельного прибора. Примеры
таких транзисторов приведены в таблице.
В остальном работа ключа остаётся такой же.
Ключ на полевом транзисторе
В дальнейшем полевым транзистором мы будет называть конкретно MOSFET,
то есть полевые транзисторы с изолированным
затвором
(они же МОП, они же МДП). Они удобны тем, что управляются
исключительно напряжением: если напряжение на затворе больше
порогового, то транзистор открывается. При этом управляющий ток через
транзистор пока он открыт или закрыт не течёт. Это значительное
преимущество перед биполярными транзисторами, у которых ток течёт всё
время, пока открыт транзистор.
Также в дальнейшем мы будем использовать только n-канальные MOSFET
(даже для двухтактных схем). Это связано с тем, что n-канальные
транзисторы дешевле и имеют лучшие характеристики.
Простейшая схема ключа на MOSFET приведена ниже.
Опять же, нагрузка подключена «сверху», к стоку. Если подключить её
«снизу», то схема не будет работать. Дело в том, что тразистор
открывается, если напряжение между затвором и истоком превышает
пороговое. При подключении «снизу» нагрузка будет давать
дополнительное падение напряжения, и транзистор может не открыться или
открыться не полностью.
При управлении типа push-pull схема разряда конденсатора образует,
фактически, RC-цепочку, в которой максимальный ток разряда будет равен
где $V$ – напряжение, которым управляется транзистор.
Таким образом, достаточно будет поставить резистор на 100 Ом, чтобы
ограничить ток заряда – разряда до 10 мА. Но чем больше сопротивление
резистора, тем медленнее он будет открываться и закрываться, так как
постоянная времени $\tau = RC$ увеличится
Это важно, если транзистор
часто переключается. Например, в ШИМ-регуляторе
Основные параметры, на которые следует обращать внимание – это
пороговое напряжение $V_{th}$, максимальный ток через сток $I_D$ и
сопротивление сток – исток $R_{DS}$ у открытого транзистора. Ниже приведена таблица с примерами характеристик МОП-транзисторов
Ниже приведена таблица с примерами характеристик МОП-транзисторов.
Модель | $V_{th}$ | $\max\ I_D$ | $\max\ R_{DS}$ |
---|---|---|---|
2N7000 | 3 В | 200 мА | 5 Ом |
IRFZ44N | 4 В | 35 А | 0,0175 Ом |
IRF630 | 4 В | 9 А | 0,4 Ом |
IRL2505 | 2 В | 74 А | 0,008 Ом |
Для $V_{th}$ приведены максимальные значения. Дело в том, что у разных
транзисторов даже из одной партии этот параметр может сильно
отличаться. Но если максимальное значение равно, скажем, 3 В, то этот
транзистор гарантированно можно использовать в цифровых схемах с
напряжением питания 3,3 В или 5 В.
Сопротивление сток – исток у приведённых моделей транзисторов
достаточно маленькое, но следует помнить, что при больших напряжениях
управляемой нагрузки даже оно может привести к выделению значительной
мощности в виде тепла.
Схема ускоренного включения
Как уже было сказано, если напряжение на затворе относительно истока
превышает пороговое напряжение, то транзистор открывается и
сопротивление сток – исток мало. Однако, напряжение при включении не
может резко скакнуть до порогового. А при меньших значениях транзистор
работает как сопротивление, рассеивая тепло. Если нагрузку приходится
включать часто (например, в ШИМ-контроллере), то желательно как можно
быстрее переводить транзистор из закрытого состояния в открытое и
обратно.
Ещё раз обратите внимание на расположение нагрузки для n-канального
транзистора – она расположена «сверху». Если расположить её между
транзистором и землёй, из-за падения напряжения на нагрузке напряжение
затвор – исток может оказаться меньше порогового, транзистор откроется
не полностью и может перегреться и выйти из строя
Конструкция и принцип работы
Ранее вместо транзисторов в электрических схемах использовались специальные малошумящие электронные лампы, но они были больших габаритов и работали за счет накаливания. Биполярный транзистор ГОСТ 18604.11-88 – это полупроводниковый электрический прибор, который является управляемым элементом и характеризуется трехслойной структурой, применяется для управления СВЧ. Может находиться в корпусе и без него. Они бывают p-n-p и n–p–n типа. В зависимости от порядка расположения слоев, базой может быть пластина p или n, на которую наплавляется определенный материал. За счет диффузии во время изготовления получается очень тонкий, но прочный слой покрытия.
Фото — мпринципиальные схемы включения
Чтобы определить, какой перед Вами транзистор, нужно найти стрелку эммитерного перехода. Если её направление идет в сторону базы, то структура pnp, если от неё – то npn. Некоторые полярные импортные аналоги (IGBT и прочие) могут иметь буквенное обозначение перехода. Помимо этого бывают еще биполярные комплементарные транзисторы. Это устройства, у которых одинаковые характеристики, но разные типы проводимости. Такая пара нашла применение в различных радиосхемах. Данную особенность нужно учитывать, если необходима замена отдельных элементов схемы.
Фото — конструкция
Область, которая находится в центре, называется базой, с двух сторон от неё располагаются эммитер и коллектор. База очень тонкая, зачастую её толщина не превышает пары 2 микрон. В теории существует такое понятие, как идеальный биполярный транзистор. Это модель, у которой расстояние между эммитерной и коллекторной областями одинаковое. Но, зачастую, эммиторный переход (область между базой и эммитером) в два раза больше коллекторного (участок между основой и коллектором).
Фото — виды биполярных триодов
По виду подключения и уровню пропускаемого питания, они делятся на:
- Высокочастотные;
- Низкочастотные.
По мощности на:
- Маломощные;
- Средней мощности;
- Силовые (для управления необходим транзисторный драйвер).
Принцип работы биполярных транзисторов основан на том, что два срединных перехода расположены по отношению друг к другу в непосредственной близости. Это позволяет существенно усиливать проходящие через них электрические импульсы. Если приложить к разным участкам (областям) электрическую энергию разных потенциалов, то определенная область транзистора сместится. Этим они очень похожи на диоды.
Фото — пример
Например, при положительном открывается область p-n, а при отрицательном она закрывается. Главной особенностью действия транзисторов является то, что при смещении любой области база насыщается электронами или вакансиями (дырками), это позволяет снизить потенциал и увеличить проводимость элемента.
Существуют следующие ключевые виды работы:
- Активный режим;
- Отсечка;
- Двойной или насыщения;
- Инверсионный.
Перед тем, как определить режим работы в биполярных триодах, нужно разобраться, чем они отличаются друг от друга. Высоковольтные чаще всего работают в активном режиме (он же ключевой режим), здесь во время включения питания смещается переход эмиттера, а на коллекторном участке присутствует обратное напряжение. Инверсионный режим – это антипод активного, здесь все смещено прямо-пропорционально. Благодаря этому, электронные сигналы значительно усиливаются.
Во время отсечки исключены все типы напряжения, уровень тока транзистора сведен к нулю. В этом режиме размыкается транзисторный ключ или полевой триод с изолированным затвором, и устройство отключается. Есть еще также двойной режим или работа в насыщении, при таком виде работы транзистор не может выступать как усилитель. На основании такого принципа подключения работают схемы, где нужно не усиление сигналов, а размыкание и замыкание контактов.
Из-за разности уровней напряжения и тока в различных режимах, для их определения можно проверить биполярный транзистор мультиметром, так, например, в режиме усиления исправный транзистор n-p-n должен показывать изменение каскадов от 500 до 1200 Ом. Принцип измерения описан ниже.
Основное назначение транзисторов – это изменение определенных сигналов электрической сети в зависимости от показателей тока и напряжения. Их свойства позволяют управлять усилением посредством изменения частоты тока. Иными словами, это преобразователь сопротивления и усилитель сигналов. Используется в различной аудио- и видеоаппаратуре для управления маломощными потоками электроэнергии и в качестве УМЗЧ, трансформаторах, контроля двигателей станочного оборудования и т. д.
Видео: как работает биполярные транзисторы