в

В чем отличия между магнитным полем и электрическим, есть ли разница

Силовые линии магнитного поля

Преимущества и недостатки электрических силовых линий

Электрические силовые линии представляют собой линии, которые иллюстрируют направление движения заряда в электрическом поле. В отличие от магнитных силовых линий, электрические силовые линии связаны с взаимодействием электрических зарядов.

Преимущества электрических силовых линий:

  • Иллюстрация направления электрического поля: электрические силовые линии помогают лучше представить себе направление электрического поля в данной точке пространства. Они позволяют визуализировать, как электрический заряд воздействует на другие заряды и объекты.
  • Удобство описания: электрические силовые линии предоставляют простой и наглядный способ описания электрического поля. Они позволяют представить сложную форму электрического поля в виде графического изображения.
  • Анализ интенсивности поля: электрические силовые линии также помогают определить интенсивность электрического поля в разных точках. Чем ближе линии друг к другу, тем больше интенсивность поля в данной точке.

Недостатки электрических силовых линий:

  • Отсутствие количественных данных: электрические силовые линии не предоставляют количественных данных об электрическом поле. Они лишь дают визуальное представление его направления и интенсивности, но не позволяют точно определить численные значения.
  • Ограниченное применение: электрические силовые линии эффективно используются для описания дипольных систем и простых форм электрических полей. Однако, для более сложных систем, таких как множественные заряды, требуются дополнительные методы и моделирование.

В целом, электрические силовые линии являются полезным инструментом для визуализации и анализа электрического поля. Они демонстрируют его направление и помогают понять его свойства. Однако, для полного понимания и анализа электрического поля требуется более сложное и точное математическое описание.

What is Magnetic Field?

A magnetic field is a region of moving electric charge on which the force of magnetism acts. Magnetism acts only occur when a magnetic field is present.

Magnetic fields are the lines that generate around the two poles of the magnet, which are the North Pole and the South Pole. It is due to the attraction or repulsion of the forces.

The magnetic field is always represented by parallel straight lines or lines of force. The compactness of the lines represents the magnitude of the field.

These lines are continuous that run from north to south by forming a closed loop. However, the magnetic field can be explained in two different ways:

·   Magnetic Field Vector: Mathematically, the magnetic field can be described as a vector field. The field vector is a set of many vectors, and every single vector tells the direction that a compass indicates. It has a length that depends on the strength of the magnetic force.

·   Magnetic Field Lines: Magnetic field lines are used to represent the magnetic field. It indicates the magnitude of the field. The magnetic fields near the poles of a magnet are stronger rather than the magnetic fields that are away from the poles.

What is Electric Field?

An electric field is surrounded by electrically charged particles that exert force on all the other charged particles that may attract or repel them.

It is produced by a unit pole charge that may either be negative or positive. It is a system of charged particles. Electric field arises from electric charges or from time-varying magnetic fields.

The direction of the field is recognized as the direction of the force which is imposing on the positive charge. The electric lines of force come out for the positive charge and move towards the negative charge. Types of the electric field:

·   Uniform Electric Field: The field which is constant at every point by placing two conductors parallel to each other and the potential difference remains the same is called a uniform electric field.

·   Non-uniform Electric Field: The field which is irregular at every point and has a different magnitude and direction is called a non-uniform magnetic field.

In an electric field, the field lines never intersect with each other. They are always perpendicular to the magnetic field of lines. When the lines of the fields are close together, the field is strong.

But when the lines move apart, the field lines become weak. The field lines are always directly proportional to the magnitude of the charge.

The electric fields always start with a positive charge and end with a negative charge. But in case any charge is single, then they start or end at infinity.

The line curves in an electric field are continuous in a charge-free region. And the lines of the electric fields are always measured in two dimensions.

Понятие и свойства электрического поля

1. Направленность: электрическое поле всегда направлено от положительного заряда к отрицательному. Это означает, что сила, действующая на положительный заряд, всегда направлена по линиям электрического поля.

2. Величина: величину электрического поля можно измерить с помощью электрической силы, действующей на заряд. Чем ближе заряд находится к источнику поля, тем сильнее это поле.

3. Интенсивность: интенсивность электрического поля зависит от количества источников электрического заряда в конкретном пространстве. Чем больше зарядов в данном пространстве, тем сильнее электрическое поле.

4. Линии сил: электрическое поле представляет собой систему линий сил, которые изображают направление и силу электрической силы, действующей на положительный заряд в каждой точке поля.

5. Распределение: распределение электрического поля в пространстве зависит от конфигурации источников заряда. В простых случаях, например, при источнике заряда в виде точечного заряда, поле распространяется радиально и имеет сферические линии сил.

6. Взаимодействие: электрическое поле взаимодействует с другими заряженными частицами, создавая на них силу, называемую электрической силой. Это взаимодействие играет важную роль во многих физических явлениях.

Урок 28. Сравнение электрического и магнитного полей

Урок 28. Сравнение электрического и магнитного полей

Урок проводится после изучения темы «Магнитное поле». Основной методический прием — выделение общих и отличительных черт в электрическом и магнитном полях с заполнением таблицы.

I. Слово учителя

Физика и философия рассматривают материю как основу всего сущего, которая существует в разных формах. Она может быть сосредоточена в пределах ограниченной области пространства (локализована), но может быть, напротив, «делокализована». Первому состоянию можно поставить в соответствие понятие «вещество», второму — понятие «поле». И то и другое состояния, наряду со специфическими физическими характеристиками, имеют и общие. Например, есть энергия единицы объема вещества, есть энергия единицы объема поля. Свойства материи неисчерпаемы, процесс познания бесконечен. Поэтому все физические понятия надо рассматривать в развитии. Так, например, современная физика в отличие от классической не проводит строгой границы между полем и веществом. В современной физике поле и вещество взаимно превращаются: вещество переходит в поле, а поле переходит в вещество. Но не будем забегать вперед, а вспомним классификацию форм материи.

II. Работа со схемой

С помощью кодоскопа проецируется схема.

Попробуйте по схеме составить кратким рассказ о формах существования материи.

После ответа учащихся учитель напоминает о сходстве характеристик гравитационного и электрического полей, которое было выявлено на предыдущих уроках по теме «Электрическое поле». Напрашивается вывод: если есть сходство между гравитационным и электрическим полями, то должно быть оно и между полями электрическим и магнитным.

III. Работа с таблицей

Предлагается сопоставить свойства и характеристики полей в виде таблицы, аналогичной той, которую делали при сравнении гравитационного и электрического полей.

Изображение магнитного поля

Для наглядности магнитное поле, как и электрическое, можно изображать графически с помощью силовых линий. Данные линии носят название линий магнитной индукции.

Линиями магнитной индукции (или силовыми линиями магнитного поля) называют кривые, изображающие магнитное поле так, что если провести касательную в любой точке к этой линии, то она будет направлена так же как вектор магнитной индукции в избранной точке.

Эти линии всегда замкнуты или начинаются и заканчиваются в бесконечности. В этом состоит качественное отличие магнитного поля от электростатического. Силовые линии магнитного поля охватывают проводники с токами. Тот факт, что силовые линии магнитного поля всегда замкнуты, говорит том, что не существует в природе свободных магнитных зарядов.

Попробуй обратиться за помощью к преподавателям

Силовые линии электростатического поля разомкнуты. Они начинаются на положительных и заканчиваются на отрицательных зарядах.

Как направлены линии магнитной индукции, находят, применяя правило правого винта (правило буравчика, его еще называют правилом Максвелла). Если правый винт вкручивать в соответствии с направлением течения тока, то направление вращения головки винта укажет на направление линий магнитной индукции поля.

Рассмотрим круговой виток с током (рис.1). Плоскость витка лежит в плоскости чертежа. Вращаем головку буравчика по току, получаем, направление линий магнитной индукции указанное на рисунке. Плоскость, в которой они лежат, перпендикулярна плоскости чертежа. Линии индукции поля бесконечно навиваются на виток, плотно заполняют все пространство, но никогда не возвращаются дважды в одну точку поля.

Рисунок 1. Круговой виток с током. Автор24 — интернет-биржа студенческих работ

Задай вопрос специалистам и получи ответ уже через 15 минут!

Схематичное изображение магнитного поля при помощи силовых линий рассказывает не только о направлении поля. В нем должна быть заключена информация о величине магнитной индукции этого поля. Линии магнитной индукции изображают с такой частотой, что количество их, пересекающих единицу площадки, нормальной к этим линям, было прямо пропорционально модулю вектора магнитной индукции.

В неоднородных полях в точках увеличения магнитной индукции число силовых линий на единицу площади увеличивается. Там, где поле ослабевает, силовые линии редеют.

В однородном магнитном поле, в котором во всех точках $ vec=const$, линии магнитной индукции чертят в виде совокупности равноудаленных прямых.

У постоянного магнита силовые линии начинаются на северном полюсе и приходят к южному. Внутри этого магнита линии магнитной индукции не разрываются (рис.2). Внешнее магнитное поле полосового магнита неоднородное (силовые линии искривлены), внутри этого магнита магнитное поле можно считать однородным, так как линии магнитной индукции параллельные прямые, находящиеся на равных расстояниях друг от друга.

Рисунок 2. Линии магнитной индукции. Автор24 — интернет-биржа студенческих работ

Основные отличия

Электрическое полеМагнитное поле
Образуется вокруг электрического заряда или заряженного объекта.Образуется вокруг движущегося электрического заряда или магнита.
Взаимодействует с другими зарядами и заряженными телами.Взаимодействует с другими магнитами или движущимися зарядами.
Имеет силовые линии, идущие от положительного к отрицательному заряду.Имеет силовые линии, образующие замкнутые петли.
Измеряется в электрических единицах — вольтах/метре (В/м).Измеряется в единицах СИ — теслах (Т).
Оказывает электрическую силу на заряды внутри поля.Влияет на движущиеся заряды, создавая магнитные силы.
Электрическое поле может быть создано источниками постоянного или переменного тока.Магнитное поле может быть создано движущимися зарядами и постоянными магнитами.

Основная разница между электрическим и магнитным полем заключается в их природе и взаимодействии с зарядами и движущимися зарядами. Оба поля являются важными для различных приложений в нашей повседневной жизни и в научных исследованиях.

Как измерить ЭМП

Вектором магнитной индукции B характеризуется интенсивность силового действия со стороны магнитного поля (на полюс или на ток), и поэтому является его главной характеристикой в данной точке пространства.

Значит, исследуемое магнитное поле может взаимодействовать силовым образом либо с магнитом, либо с элементом тока. Кроме того, оно способно наводить ЭДС индукции в контуре, если магнитное поле, пронизывающее контур, изменяется с течением времени, либо если контур изменяет свое положение относительно магнитного поля.

На элемент проводника с током длиной dl в магнитном поле с индукцией B будет действовать сила F, величина которой может быть найдена с помощью следующей формулы:

Значит, индукция B исследуемого магнитного поля может быть найдена по силе F, действующей на помещенный в это магнитное поле проводник заданной длины l с постоянным током известной величины I.

Магнитные измерения удобно проводить практически, используя величину, называемую магнитным моментом. Магнитный момент Pm характеризует контур площади S с током I, а величина магнитного момента определяется так:

ρm= I×S

Если используется катушка из N витков, то ее магнитный момент будет равен: 

ρm= I×N×S

Механический момент взаимодействия магнитных сил M можно найти, исходя из значений магнитного момента Pm и индукции магнитного поля B следующим образом:

Однако для измерения магнитного поля не всегда удобно пользоваться его механическими силовыми проявлениями. Есть еще одно явление, на которое можно опереться. Это явление электромагнитной индукции. Закон электромагнитной индукции в математической форме записывается формулой:

Итак, магнитное поле проявляет себя силами либо наводимой ЭДС. При этом источником самого магнитного поля является электрический ток.

Если ток, порождающий магнитное поле в данной точке пространства известен, то напряженность магнитного поля в этой точке (на расстоянии r от элемента тока) можно найти с помощью закона Био-Савара-Лапласа:

Стоит отметить, что магнитная индукция B в вакууме связана с напряженностью магнитного поля H (порожденного соответствующим током) следующим соотношением: Β0=μ0H. 

Магнитная постоянная вакуума в системе СИ определяется через ампер. Для произвольной же среды данная константа есть отношение магнитной индукции в данной среде к магнитной индукции в вакууме, и называется магнитной проницаемостью среды: μ=B/B0. 

Магнитная проницаемость воздуха практически совпадает с магнитной проницаемостью вакуума, поэтому для воздуха магнитная индукция B практически тождественна напряженности магнитного поля H.

Единица измерения магнитной индукции в системе СИ — тесла , в системе СГС — Гаусс , причем 1 Тл = 10000 Гс. Измерительные приборы для определения индукции магнитного поля, называются тесламетрами. 

Напряженность H магнитного поля измеряется в амперах на метр (А/м), причем 1 ампер/метр задается как напряженность магнитного поля соленоида бесконечной длины с единичной плотностью витков при протекании по данному соленоиду тока в 1 ампер. Один ампер на метр можно определить и иначе: это напряженность магнитного поля в центре круглого витка с током в 1 ампер при диаметре витка в 1 метр.

Стоит отметить такую величину, как магнитный поток индукции — Ф. Это скалярная величина, в системе СИ она измеряется в веберах, а в системе СГС — в максвеллах, причем 1 мкс = 0,00000001 Вб. 1 Вебер — это магнитный поток такой величины, что при убывании его до нуля, по сцепленной с ним проводящей цепи сопротивлением 1 Ом, пройдет заряд в 1 Кулон.

Если принять за исходную величину магнитный поток Ф, то индукция магнитного поля B будет плотностью магнитного потока. Приборы для измерения магнитного потока называются веберметрами. 

Магнитная индукция может определяться либо через силу (или через механический момент), либо через наводимую в контуре ЭДС. Это так называемые прямые измерительные преобразования, при которых магнитный поток или магнитная индукция выражаются через другую физическую величину (силу, заряд, момент, разность потенциалов), однозначно связанную с магнитной величиной посредством фундаментального физического закона.

Преобразования, в которых магнитная индукция B или магнитный поток Ф находятся через ток I, длину l или радиус r, называются обратными преобразованиями. Такие преобразования выполняются с опорой на закон Био-Савара-Лапласа, с использованием известного соотношения между магнитной индукцией B и напряженностью магнитного поля H.

Сила порождаемая электрическими зарядами

Напряженность электрического поля является векторной величиной, а значит имеет численную величину и направление. Величина напряженности электрического поля имеет свою размерность, которая зависит от способа ее вычисления.

Электрическая сила взаимодействия зарядов описывается как бесконтактное действие, а иначе говоря имеет место дальнодействие, то есть действие на расстоянии. Для того, чтобы описать такое дальнодействие удобно ввести понятие электрического поля и с его помощью объяснить действие на расстоянии.

Давайте возьмем электрический заряд, который мы обозначим символом Q. Этот электрический заряд создает электрическое поле, то есть он является источником действия силы. Так как во вселенной всегда имеется хотя бы один положительный и хотя бы один отрицательный заряд, которые действую друг на друга на любом, даже бесконечно далеком расстоянии, то любой заряд является источником силы, а значит уместно описание создаваемого ими электрического поля. В нашем случае заряд Q является источником электрического поля и мы будем его рассматривать именно как источник поля.

Напряженность электрического поля источника заряда может быть измерена с помощью любого другого заряда, находящегося где-то в его окрестностях. Заряд, который используется для измерения напряженности электрического поля называют пробным зарядом, так как он используется для проверки напряженности поля. Пробный заряд имеет некоторое количество заряда и обозначается символом q.

При помещении пробного заряда в электрическое поле источника силы (заряд Q), пробный заряд будет испытывать действие электрической силы — или притяжения, или отталкивания. Силу можно обозначить как это обычно принять в физике символом F. Тогда величину электрического поля можно определить просто как отношение силы к величине пробного заряда.

Если напряженность электрического поля обозначается символом E, то уравнение может быть переписано в символической форме как

Стандартные метрические единицы измерения напряженности электрического поля возникают из его определения. Таким образом напряженность электрического поля определяется как сила равная 1 Ньютону (Н) деленному на 1 Кулон (Кл). Напряженность электрического поля измеряется в Ньютон/Кулон или иначе Н/Кл. В системе СИ также измеряется в Вольт/метр. Для понимания сути такого предмета как напряженность электрического поля гораздо важнее размерность в метрической системе в Н/Кл, потому как в такой размерность отражается происхождение такой характеристики как напряженность поля. Обозначение в Вольт/Метр делает понятие потенциала поля (Вольт) базовым, что в некоторых областях удобно, но не во всех.

В приведенном выше примере участвуют два заряда Q (источник) и q пробный. Оба этих заряда являются источником силы, но какой из них следует применять в вышеприведенной формуле? В формуле присутствует только один заряд и это пробный заряд q (не источник).

Напряженность электрического поля не зависит от количества пробного заряда q. На первый взгляд это может привести вас в замешательство, если, конечно, вы задумаетесь над этим. Беда в том, что не все имеют полезную привычку думать и пребывают в так называемом блаженном невежестве. Если вы не думаете, то и замешательства такого рода у вас и не возникнет. Так как же напряженность электрического поля не зависит от q, если q присутствует в уравнении? Отличный вопрос! Но если вы подумаете об этом немного, вы сможете ответить на этот вопрос. Увеличение количества пробного заряда q — скажем, в 2 раза — увеличится и знаменатель уравнения в 2 раза. Но в соответствии с Законом Кулона, увеличение заряда также увеличит пропорционально и порождаемую силу F. Увеличится заряд в 2 раза, тогда и сила F возрастет в то же количество раз. Так как знаменатель в уравнении увеличивается в два раза (или три, или четыре), то и числитель увеличится во столько же раз. Эти два изменения компенсируют друг друга, так что можно смело сказать, что напряженность электрического поля не зависит от количества пробного заряда.

Таким образом, независимо от того, какого количества пробный заряд q используется в уравнении, напряженность электрического поля E в любой заданной точке вокруг заряда Q (источника) будет одинаковой при измерении или вычислении.

Что такое магнитное поле?

Под этим термином в физике понимают силовое поле, которое оказывает влияние исключительно на движущиеся тела, частицы или заряды. Каждый из элементов характеризуется магнитным моментом. Сила в таком случае меньше зависит от движения заряда. В качестве заряженных частиц в этом случае выступают электроны. Что касается напряженности этого вида поля, величина будет находиться в прямой пропорции от скорости заряда и его параметров.

В качестве лучшего примера стоит привести планету Земля. Ее центральная часть состоит из раскаленного железа. Как и другие металлические объекты, он может перемещать по себе электроны. Именно поэтому наибольшее магнитное поле на Земле формируется самой планетой, или ее центром, если сказать точнее. Если это поле исчезнет, высока вероятность катастроф и даже гибели живых организмов.

Мнение эксперта
Карнаух Екатерина Владимировна
Закончила Национальный университет кораблестроения, специальность «Экономика предприятия»

В качестве более стандартного примера такого понятия стоит привести электромагниты. Они, как правило, включают провода, которые обмотаны вокруг ферромагнетиков. Эти элементы представляют собой ряд веществ, которые приобретают магнитные характеристики лишь в том случае, если их температура ниже конкретного уровня. Последний параметр называют в физике температурой Кюре. По сути, ферромагнетики считаются уникальными элементами. Они вступают во взаимодействие с магнитным полем, но при этом не несут движущихся зарядов.

В чем отличия между магнитным полем и электрическим, есть ли разница

Магнитное и электрическое поля часто рассматриваются вместе, поскольку их можно назвать двумя сторонами одной медали. Для рассматриваемых понятий характерно много общих черт. К примеру, оба поля создаются электрическими зарядами. К тому же на все заряженные тела оказывает воздействие кулоновская сила. При этом существует и много отличий магнитного поля от электрического. Они затрагивают источники, графическое изображение, единицы измерения.

Что такое электрическое поле?

В физике под этим понятием принято понимать векторное поле, которое формируется вокруг частиц или тел, обладающих определенным зарядом. Электрическое поле считается одной из двух неотъемлемых составляющих электромагнитного поля.

Чтобы лучше разобраться в природе этого явления, нужно вспомнить, что такое кулоновская сила. Закон Кулона служит для определения степени взаимодействия между каждым из пары точечных электрических зарядов. При этом он учитывает сведения об интервале между ними.

Чтобы разобраться в напряженности явления, стоит обратиться к такому примеру:

  1. Есть 2 тела, которые обладают зарядом. При этом одно из них является неподвижным, а второе – перемещается вокруг первого.
  2. Кулоновская сила в этом случае равняется произведению заряда и напряженности.
  3. Напряженность будет включать параметр центрального заряда и квадрат расстояния от центра до второго тела.

Что такое магнитное поле?

Под этим термином в физике понимают силовое поле, которое оказывает влияние исключительно на движущиеся тела, частицы или заряды. Каждый из элементов характеризуется магнитным моментом. Сила в таком случае меньше зависит от движения заряда. В качестве заряженных частиц в этом случае выступают электроны. Что касается напряженности этого вида поля, величина будет находиться в прямой пропорции от скорости заряда и его параметров.

В качестве лучшего примера стоит привести планету Земля. Ее центральная часть состоит из раскаленного железа. Как и другие металлические объекты, он может перемещать по себе электроны. Именно поэтому наибольшее магнитное поле на Земле формируется самой планетой, или ее центром, если сказать точнее. Если это поле исчезнет, высока вероятность катастроф и даже гибели живых организмов.

В чем разница между электрическим полем и магнитным полем?

Оба рассматриваемых понятия считаются силовыми. Это означает, что в каждой точке пространства, в которой действует поле, на заряд влияет конкретная сила. В другой точке ее значение будет отличаться. Электромагнитное поле оказывает воздействие на заряженные тела и частицы. При этом оно действует на все заряды, тогда как магнитное поле – исключительно на движущиеся.

Существуют вещества, которые взаимодействуют с магнитным полем, но не включают движущиеся заряды. К ним, в частности, относятся ферромагнетики. Этим понятие отличается от электрического поля, поскольку аналогичных веществ для него не существует. У магнитов, естественных или намагниченных тел существует 2 полюса. Их называют южным и северным.

Отличается и графическое изображение рассматриваемых физических явлений. Линии напряженности электрического поля обладают началом и концом. Их можно визуализировать. В качестве примера стоит привести кристаллы хинина в масле. Линии индукции замкнуты. Их тоже можно визуализировать. Примером этого служат металлические опилки.

Отдельно стоит упомянуть электромагнитное поле, которое обладает характеристиками как электрического, так и магнитного поля. Это означает, что оно способно в определенных условиях поворачивать стрелку компаса и перемещать электрически заряженные частицы. Обе составляющие имеют тесную взаимосвязь друг с другом. Каждая из них отличается своим энергетическим запасом. Именно он влияет на энергию всего электромагнитного поля.

Выводы

Оба рассматриваемых понятия изучаются разделом физики, который называется электромагнетизмом. Они представляют собой отдельные объекты, но имеют тесную взаимосвязь друг с другом. Электрическим полем называют область вокруг перемещающейся электрически заряженной частицы. Она также создает магнитное поле.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

банные принадлежности

Отличие бани от сауны