Разновидности движков
Конструкция ротора и принцип действия синхронной машины-двигателя напрямую связана
- с мощностью, которую надо создать на его вале,
- необходимой для этого величиной магнитного потока,
- параметрами напряжения питания статора.
Устройство синхронных машин небольшой мощности получается более простым при изготовлении магнитного ротора из специальных материалов. Так же применяется явно полюсный ротор с малой начальной намагниченностью. В результате получаются конструкции с постоянными магнитами, а также гистерезисные и синхронные реактивные двигатели. На статор этих движков подается переменное напряжение. Число фаз и частота соответствуют конструкции двигателя. В однофазных движках может быть использован конденсатор, через который подключается одна из двух обмоток статора. Но может быть применена схема из показанных далее вариантов.
Варианты устройства синхронных двигателей
Разновидности роторов
Принцип работы ротора
Один из вариантов конструкции двигателя
Ротор с постоянными магнитами
Гистерезисный движок
Три разновидности конструкции ротора реактивного двигателя
Гистерезисный движок похож на синхронный реактивный двигатель. Эти синхронные машины переменного тока характеризует одинаковый принцип действия. Его определяет магнитное поле статора, намагничивающее ротор. Гистерезисный движок и синхронный реактивный электродвигатель своей надежностью не уступают асинхронным двигателям. Однако роторы этих синхронных машин всегда бывают существенно дороже роторов асинхронных движков.
С целью получения максимального силового взаимодействия и больших по величине крутящих моментов в роторе используется принцип электромагнита. При этом его называют индуктором с обмоткой возбуждения. Для ее питания применяется постоянное напряжение, которое подается на щетки. Они расположены на статоре и скользят по кольцам, установленным на роторе. Через эту пару скользящих контактов течет постоянный ток возбуждения.
Классический движок с индуктором
Такое классическое устройство синхронной машины существует и в наши дни, но преимущественно в наиболее мощных моделях. Для запуска движков обычно используются конструктивные решения со скольжением магнитных полей, характерные для асинхронных двигателей. При наличии индуктора для этого достаточно накоротко замкнуть щетки. В синхронных электрических машинах движки без щеток в роторе делаются с пусковыми обмотками типа беличьей клетки. Могут быть иные конструктивные решения для асинхронного старта.
Важной особенностью рассматриваемых двигателей, питаемых переменным напряжением, является их польза при работе без механической нагрузки или при ее небольшой величине. В таком режиме работы при небольшом возбуждении реактивная мощность из сети потребляется, а при значительном — отдается в сеть
Тем самым увеличивается эффективность электроснабжения
Для этой цели делаются специальные движки, называемые синхронными компенсаторами
Тем самым увеличивается эффективность электроснабжения. Для этой цели делаются специальные движки, называемые синхронными компенсаторами.
Движки-компенсаторы на подстанции
Развитие полупроводниковых приборов позволило создавать вращающееся магнитное поле путем преобразования постоянного напряжения. Очевидно то, что такое техническое решение расширило возможности управления электрическими двигателями. Регулирование частоты питающего напряжения и бесконтактный индуктор — это главные достижения полупроводниковых моделей. Но при этом существуют ограничения, определяемые возможностями электронных ключей.
По этой причине наиболее мощные из всех существующих движков по-прежнему являются трехфазными индукторными конструкциями со щетками и кольцами.
Синхронный и асинхронный двигатели: в чём разница?
Синхронные двигатели имеют постоянную скорость вращения, которая соответствует частоте синусоидального электрического тока, подаваемого на двигатель. Она синхронизируется с частотой тока, а потому называется синхронным двигателем. Такие двигатели обычно применяются в устройствах, где требуется постоянная скорость вращения, например, в вентиляторах, насосах или электрических генераторах.
Асинхронные двигатели работают с переменной скоростью вращения, которая отличается от частоты подаваемого тока. Они считаются более универсальными, поскольку могут легко адаптироваться к изменениям нагрузки и обеспечивать высокие моменты вращения. Такие двигатели широко используются в различных устройствах, включая подъемники, эскалаторы, компрессоры и промышленные машины.
Основные отличия между синхронными и асинхронными двигателями можно также свести к разным методам управления и режимам работы. Синхронный двигатель требует специального управления с использованием специализированных преобразователей частоты для поддержания своей постоянной скорости вращения. Асинхронные двигатели, с другой стороны, обычно управляются системами управления скоростью, позволяя им адаптироваться к изменениям нагрузки и достигать требуемых скоростей.
Таким образом, наличие постоянной скорости вращения является ключевым отличием синхронных двигателей от асинхронных. При выборе между двумя типами двигателей необходимо учитывать требования конкретного устройства и его условия эксплуатации.
Принципы работы
Принцип действия [ править | править код ]
В основу работы подавляющего числа электрических машин положен принцип электромагнитной индукции. Электрическая машина состоит из неподвижной части — статора (для асинхронных и синхронных машин переменного тока) или индуктора (для машин постоянного тока) и подвижной части — ротора (для асинхронных и синхронных машин переменного тока) или якоря (для машин постоянного тока). В роли индуктора на маломощных двигателях постоянного тока очень часто используются постоянные магниты.
Ротор асинхронного двигателя может быть:
- короткозамкнутым;
- фазным (с обмоткой) — используются там, где необходимо уменьшить пусковой ток и регулировать частоту вращения асинхронного электродвигателя. В большинстве случаев это крановые электродвигатели серии МТН, которые повсеместно используются в крановых установках.
Якорь — это подвижная часть машин постоянного тока (двигателя или генератора) или же работающего по этому же принципу так называемого универсального двигателя (который используется в электроинструменте). По сути универсальный двигатель — это тот же двигатель постоянного тока (ДПТ) с последовательным возбуждением (обмотки якоря и индуктора включены последовательно). Отличие только в расчётах обмоток. На постоянном токе отсутствует реактивное (индуктивное или ёмкостное) сопротивление. Поэтому любая «болгарка», если из неё извлечь электронный блок, будет вполне работоспособна и на постоянном токе, но при меньшем напряжении сети.
Принцип действия трёхфазного асинхронного электродвигателя
При включении в сеть в статоре возникает круговое вращающееся магнитное поле, которое пронизывает короткозамкнутую обмотку ротора и наводит в ней ток индукции. Отсюда, следуя закону Ампера (на проводник с током, помещённый в магнитное поле, действует отклоняющая сила), ротор приходит во вращение. Частота вращения ротора зависит от частоты питающего напряжения и от числа пар магнитных полюсов.
Разность между частотой вращения магнитного поля статора и частотой вращения ротора характеризуется скольжением. Двигатель называется асинхронным, так как частота вращения магнитного поля статора не совпадает с частотой вращения ротора.
Синхронный двигатель имеет отличие в конструкции ротора. Ротор выполняется либо постоянным магнитом, либо электромагнитом, либо имеет в себе часть беличьей клетки (для запуска) и постоянные магниты или электромагниты. В синхронном двигателе частота вращения магнитного поля статора и частота вращения ротора совпадают. Для запуска используют вспомогательные асинхронные электродвигатели, либо ротор с короткозамкнутой обмоткой.
Асинхронные двигатели нашли широкое применение во всех отраслях техники. Особенно это касается простых по конструкции и прочных трёхфазных асинхронных двигателей с коротко-замкнутыми роторами, которые надёжнее и дешевле всех электрических двигателей и практически не требуют никакого ухода. Название «асинхронный» обусловлено тем, что в таком двигателе ротор вращается не синхронно со вращающимся полем статора. Там, где нет трёхфазной сети, асинхронный двигатель может включаться в сеть однофазного тока.
Статор асинхронного электродвигателя состоит, как и в синхронной машине, из пакета, набранного из лакированных листов электротехнической стали толщиной 0,5 мм, в пазах которого уложена обмотка. Три фазы обмотки статора асинхронного трёхфазного двигателя, пространственно смещённые на 120°, соединяются друг с другом звездой или треугольником.
На рисунке показана принципиальная схема двухполюсной машины — по четыре паза на каждую фазу. При питании обмоток статора от трёхфазной сети получается вращающееся поле, так как токи в фазах обмотки, которые смещены в пространстве на 120° друг относительно друга сдвинуты по фазе друг относительно друга на 120°.
Для синхронной частоты вращения nc поля электродвигателя с р парами полюсов справедливо при частоте тока f : n c = 60 f p =<60f>
>>
При частоте 50 Гц получаем для p = 1, 2, 3 (двух-, четырёх- и шести-полюсных машин) синхронные частоты вращения поля n c > = 3000, 1500 и 1000 об/мин.
Ротор асинхронного электродвигателя также состоит из листов электротехнической стали и может быть выполнен в виде короткозамкнутого ротора (с «беличьей клеткой») или ротора с контактными кольцами (фазный ротор).
Синхронный и асинхронный двигатели переменного тока
Двигатели переменного тока подразделяют на синхронные и асинхронные. Для постоянного тока это разделение не имеет особого смысла. Ведь там нет как такового понятия фаза и изменения направления тока.
Логика работы в обоих двигателях одинаковая. Но, судя по названию, в асинхронном что-то должно происходить ни в такт с основным процессом.
Синхронный и асинхронный двигатели отличаются преимущественно конструкцией ротора.
В роторе синхронного двигателя предусмотрена обмотка с независимой подачей напряжения или постоянные магнитики. Они толкают ротор относительно пульсирующего магнитного поля.
Ротор синхронного двигателя
У асинхронного ротора ток формируется с помощью магнитного статорного поля. В соответствии с законом электромагнитной индукции под действием прямого и обратного магнитных потоков в обмотке ротора станет действовать электродвижущая сила. Ротор похож по своей конструкции на колесо для грызуна. Но бывают и варианты с обмоткой, расположенной определенным образом.
Ротор асинхронного двигателя
В синхронном двигателе поля статора и ротора взаимодействуют друг с другом и имеют равную скорость. Ротор вращается в соответствии и точно в такт с полем статора. Частота вращения ротора синхронна частоте тока обмотки статора.
Не забываем, что обмотка ротора асинхронного двигателя, будь-то клетка или катушки под 120 градусов, является замкнутым контуром. В ней наводится ЭДС, а возникающий магнитный поток придает вращение ротору, отталкиваясь от пульсирующего магнитного поля статора. Движется эта кухня в направлении движения магнитного потока статора. Вращающий электромагнитный момент пытается уравнять скорости вращения магнитных полей статора и ротора, но это не всегда получается (а лучше сказать — никогда). Ведь уровнять эти моменты можно лишь в случае, если создавать поля одновременно, как в синхронном двигателе. Также влияет механическая нагрузка, которая подключена к валу ротора и мешает догнать поле. Но и в свободном состоянии эти цифры будут различаться. Ведь у любого механизма имеется некоторая инертность, а на время появления поля в замкнутой клетке (т.е. роторе асинхронного двигателя) тоже требуется время.
Вообщем-то, это основные вещи, которые вам следует уяснить. Всё остальное — это погружение в особенности конструкций конкретных агрегатов.
Основные отличия между синхронным и асинхронным двигателями
Другим основным отличием является обмотка двигателя. Синхронный двигатель имеет основную и возбуждающую обмотки, в то время как асинхронный двигатель имеет только одну обмотку.
Также, синхронный двигатель работает с постоянными магнитными полями, в то время как асинхронный двигатель создает магнитное поле благодаря току в обмотке.
Однофазные двигатели, такие как индукционные двигатели, являются разновидностью асинхронных двигателей и обладают некоторыми отличительными особенностями. Например, они работают с одной фазой переменного тока и имеют меньшую мощность по сравнению с трехфазными двигателями.
В итоге, синхронный двигатель работает с постоянным магнитным полем и постоянной частотой переменного тока, в то время как асинхронный двигатель создает магнитное поле благодаря току в обмотке и может работать с различными частотами переменного тока.
Характеристика | Синхронный двигатель | Асинхронный двигатель |
---|---|---|
Частота переменного тока | Постоянная | Различные частоты |
Обмотка | Основная и возбуждающая | Одна обмотка |
Магнитное поле | Постоянное | Создается током в обмотке |
Синхронный и асинхронный двигатель отличия
Чтобы достичь максимальной энергоэффективности производственных процессов, нужно правильно подходить к выбору двигателя для привода.
Синхронный и асинхронный двигатель – отличия для чайников
Конструкция асинхронных и синхронных электрических машин практически одинакова. У обоих электродвигателей есть неподвижный статор, состоящий из обмоток (катушек), которые уложены в пазы сердечника, набранного из пластин, выполненных из электротехнической стали, и подвижный ротор. Обмотки статора сдвинуты друг относительно друга на угол, равный 120°, поэтому проходящий по ним электрический ток создает вращающееся магнитное поле, которое вовлекает в движение ротор. Вот именно здесь и проявляется основное отличие этих электрических машин – конструкция ротора, от которой зависит скорость его вращения.
Асинхронный двигатель
Ротор такого двигателя может быть короткозамкнутым или фазным.
Вне зависимости от типа ротора в этих двигателях частота вращения ротора всегда будет меньше скорости вращения магнитного поля статора. Эта разница обусловлена законами физики:
- силовые линии магнитного поля статора, пересекая замкнутый контур ротора, индуцируют в нем электродвижущую силу, а значит и собственное магнитное поле;
- в результате взаимодействия этих полей, имеющих одинаковую полярность, возникает крутящий момент, вызывающий вращение ротора;
- в тот момент, когда скорости вращения магнитных полей становятся одинаковыми, возникновение ЭДС в роторе прекращается, в результате чего крутящий момент стремится к нулю;
- как только частота вращения ротора начинает отставать от скорости вращения поля статора, возникновение ЭДС возобновляется.
Синхронный двигатель
Ротор таких двигателей комплектуется постоянными магнитами или обмотками возбуждения. Обмотки могут быть как явнополюсными, так и распределенными (уложенными в пазы ротора). Кроме того, ротор синхронной машины может иметь и короткозамкнутые обмотки.
После разгона ротора до скорости близкой к частоте вращения магнитного поля статора, на катушки полюсов через щеточно-контактный узел подается постоянное напряжение, которое возбуждает в них постоянное магнитное поле. Противоположные полюса магнитных полей притягиваются друг к другу и частота вращения ротора становится синхронной.
Разгон ротора может осуществляться с помощью вспомогательного двигателя или в асинхронном режиме, благодаря короткозамкнутой обмотке.
Недостатки и преимущества двигателей
Синхронные двигатели имеют довольно сложную конструкцию, обусловленную наличием щеточного узла. Кроме того, для их работы требуется дополнительный источник постоянного тока. Еще одним недостатком является невозможность их эксплуатации в условиях частых пусков и остановов. Однако все это компенсируется большой мощностью, высоким КПД, устойчивостью к перепадам напряжения в питающей сети и стабильной частотой вращения вала, вне зависимости от величины нагрузки на него.
Асинхронный двигатель в отличие от синхронных машин более чувствителен к колебаниям напряжения и не может сохранять номинальную скорость вращения, при увеличении нагрузки. Но простота конструкции, длительный срок эксплуатации, универсальность применения, способность работать в режиме частых включений и остановок делают эти машины наиболее распространенными в промышленном и бытовом секторе.
Положительные качества
Запуск электродвигателей
Асинхронные электрические машины мощностью до 30-50кВт запускаются прямой подачей электроэнергии. С двигателями большой мощности и синхронными машинами дело обстоит сложнее.
Пуск асинхронных двигателей большой мощности
Для запуска таких машин используются разные способы:
- Включение добавочных сопротивлений в цепь статора. Они ограничивают пусковой ток, а после разгона закорачиваются пускателем.
- В аппаратах, предназначенных для работы в сети с фазным напряжением 660 вольт обмотки в сети 380 вольт соединены треугольником. На время пуска они переключаются в звезду.
- В электромашинах с фазным ротором для запуска в цепь ротора включаются добавочные сопротивления. После разгона они закорачиваются.
- При наличии регулировки скорости, переключением обмоток или изменением частоты, двигатель включается на минимальные обороты. После начала вращения, обороты увеличиваются.
Принцип работы
Заключается в формировании электромагнитного поля вокруг проводника, по которому протекает электрический ток. Для асинхронного электродвигателя данный процесс начинается сразу после подачи напряжения на обмотки статора, после чего в роторе наводится ЭДС взаимоиндукции, индуцирующей вихревые токи в металлическом каркасе. Наличие вихревых токов обуславливает генерацию собственной ЭДС, которая формирует электромагнитное поле ротора. Наиболее эффективный КПД асинхронной электрической машины получается при работе от трехфазной сети.
Конструктивно обмотки статора имеют смещение в пространстве друг относительно друга на 120°, что показано на рисунке 2 ниже:
Такой прием позволяет отстроить магнитное поле рабочих обмоток в строгом соответствии с напряжением трехфазной сети, которое имеет аналогичную разность кривых электрической величины.
На рисунке 3 выше все три фазы изображены в разных цветах для упрощения понимания процесса, также здесь изображена кривая токов, протекающих в фазах асинхронного электродвигателя. Теперь рассмотрим физические процессы в обмотках двигателя для трех позиций показанных на рисунке:
- I – в этой позиции максимальный ток протекает в красной обмотке электродвигателя, а значение силы тока в желтой и синей равны. Основной поток силовых линий формируется красной фазой, а два других дополняют его.
- II – в данной точке желтая синусоида равна нулю, поэтому никакого потока не создает, а сила тока красной и синей равны. Поток формируется сразу двумя фазами и смещается по часовой стрелке вправо, совершая поворот.
- III – третья точка характеризуется максимумом токовой нагрузки для синей кривой, а красная и желтая имеет равную амплитуду, но противоположную по направлению. В результате чего максимум магнитных линий южного и северного полюса сместиться еще на 30°.
По данному принципу магнитное поле статора вращается в асинхронной электрической машине в течении периода. За счет магнитного взаимодействия с полем статора асинхронного электродвигателя происходит поступательное движение ротора вокруг своей оси. Можно сказать, что ротор пытается догнать поле статора. Именно за счет разницы во вращении полей данный тип электрической машины получил название асинхронной.
Физический принцип работы электродвигателя постоянного тока
Если мы вспомним закон Ампера, то будет понятно, что на проводник с током в магнитном поле действует некоторая сила. Именно это обстоятельство позволяет получить вращающийся якорь.
Вспомним самый простой опыт, который показывают школьникам. Рамку с током помещают в магнитное поле и она начинает двигаться. Правда двигается она недолго, а скорее дергается. Всему виной несовпадение векторов. Размести мы магниты слегка иначе и получили бы постоянное движение.
Силы Ампера, действующие на боковые стороны рамки, будут создавать вращающий момент, величина которого пропорциональна магнитной индукции, силе тока в рамке, ее площади S и зависит от угла a между вектором магнитной индукции и нормалью к рамке.
Рамка с током в магнитном поле
В представленной ситуации рамка будет вращаться только тогда, когда вектора Fа будут не деформировать её, а придавать вращательное движение.
Вот так крутится рамка
Для этого в данном примере рамку нужно повернуть на 90 градусов. Теперь представим, что якорь нашего двигателя весь состоит из таких рамок, их очень много. Это улучшит процесс движения.
Вот и получился самый простой электрический двигатель постоянного тока.
Теперь представим, как будет выглядеть поведение такого двигателя при включении в цепь с переменным током. Он начнет танцевать в разные стороны. Ведь переменный электрический ток отличается тем, что регулярно меняет своё направление. Рамка с током, через которую он проходит, будет также менять направление своего движения. Крутиться равномерно такая штука не сможет. Поэтому, в переменных сетях используется двигатели переменного тока. Двигатель постоянного тока конечно же сможет работать в переменной сети, но для этого нужно использовать выпрямитель перед ним.
Правда бывают и универсальные электродвигатели, которые одинаково комфортно юзаются и там, и там. Но про это чуть позже.
Эффективность
Синхронный и асинхронный двигатели обладают разной эффективностью работы. Эффективность двигателя определяется как отношение мощности полезного действия к затратам энергии. В случае синхронного двигателя эффективность достигает своего максимального значения при работе на постоянной частоте, что обусловлено особыми свойствами магнитного поля.
Асинхронный двигатель, в свою очередь, может работать как на постоянной, так и на переменной частоте. Он имеет однофазную обмотку, которая обеспечивает надежность и долговечность работы двигателя. Однако, асинхронный двигатель немного менее эффективен по сравнению с синхронным двигателем, так как на него оказывает влияние изменяющееся магнитное поле.
Синхронный двигатель обладает высокой эффективностью работы при постоянной частоте и стабильных оборотах. Он обеспечивает плавное и стабильное вращение, что делает его идеальным для использования в промышленности.
Синхронный двигатель
Основной принцип работы синхронного двигателя заключается в замешательстве электромагнитного поля вокруг обмотки ротора с постоянной магнитной индукцией. Это создает магнитное поле вокруг ротора, которое вращается синхронно с полями статора. В результате, ротор синхронного двигателя вращается вместе с магнитным полем.
Синхронный двигатель обычно используется в приложениях, где требуется точное управление скоростью и синхронность вращения со сигналом питания. Он также может быть однофазным или трехфазным, что позволяет его использование в различных системах переменного тока.
Асинхронный двигатель
В работе асинхронного двигателя используется принцип индукции, когда вращающийся магнитный полюс ротора индуцирует в обмотках статора ток, создающий вихревые потери и магнитное поле. Это поле взаимодействует с магнитным полем статора, вызывая вращение ротора.
Асинхронные двигатели имеют две основные разновидности — однофазный и трехфазный. Однофазные асинхронные двигатели обычно используются в бытовой технике и небольших мощностях, в то время как трехфазные асинхронные двигатели наиболее распространены в промышленности. Однофазные асинхронные двигатели часто требуют дополнительные устройства для пуска и регулирования скорости, так как у них нет встроенной возможности самозапуска.
Частота переменного тока, подаваемого на статор асинхронного двигателя, является постоянной и определена стандартами электроснабжения (обычно 50 или 60 Гц). Скорость вращения ротора зависит от числа пар полюсов, сконструированных в статоре двигателя. Чем больше число пар полюсов, тем меньше скорость вращения.
Подключение однофазного синхронного электродвигателя
Несмотря на сложность конструкции синхронных двигателей, они имеют много преимуществ перед асинхронными. Главное – это низкая чувствительность к скачкам напряжения, ведущих к резкому уменьшению или увеличению силы тока. Не менее значим и тот факт, что синхронные моторы могут работать даже с перегрузкой, не говоря уже об оптимальном режиме реактивной энергии и вращении вала с постоянной скоростью. Однако подключение – трудоемкий процесс, и это уже недостаток.
Метод разгона
Нельзя пустить в ход однофазный синхронный двигатель, просто подав питание на его обмотки. Потому что в момент включения направление питающего тока в статорных намотках соответствует рисунку (а). В это время на ротор, который еще находится в состоянии покоя, действует пара сил, которая будет пытаться крутить вал по часовой стрелке. Но через половину периода в статорных намотках ток поменяет свое направление. Поэтому пара сил будет уже действовать в обратном направлении, поворачивая вал против часов стрелки, как на рисунке (б). Поскольку ротор обладает большой инертностью, он так и не сдвинется с места.
Чтобы заставить ротор вращаться, необходимо, чтобы он успевал сделать хотя бы половину оборота, чтобы изменение направления тока не повиляло на его вращение. Это возможно, если разогнать вал при помощи посторонних сил. Это можно сделать двумя путями:
- Вручную;
- С использованием второго двигателя.
Собственной силой рук можно разогнать только маломощные синхронные электродвигатели. А для средне- и высокомощных агрегатов придется использовать другой мотор.
При разгоне с посторонней силой ротор начинает вращаться со скоростью, близкой к синхронной. Потом только включается обмотка возбуждения, и затем – статорная намотка.
Асинхронный пуск синхронного мотора
Если в наконечниках на полюсах ротора уложены стержни из металла, и они соединены между собой по бокам кольцами, то мотор должен запускаться асинхронным методом. Эти стержни играют роль вспомогательной обмотки, которая есть у асинхронного двигателя. При этом намотку возбуждения закорачивают с помощью разрядного резистора, а статорную обмотку подключают к сети. Только так можно обеспечить такой же разгон, как и у асинхронного электродвигателя. Но после того, как скорость вращения максимально приблизится к синхронной (достаточно 95% от нее), намотку возбуждения соединяют с источником постоянного тока. Скорость становится полностью синхронной, что влечет за собой снижение ЭДС индукции вспомогательной обмотки вплоть до нуля. И она отключается автоматически.
Схема и способ подключения вашего двигателя будет зависеть от того, какой он у вас: синхронный или асинхронный. В учет идет также мощность мотора, а также способ пуска: с нагрузкой или без. Разобраться в рисунках вам поможет элементарное понимание механики и электромагнитных явлений.
Обмотки ротора
Вращающаяся часть асинхронного двигателя — ротор, так же как и статор, имеет обмотку. Она помещена в пазах 1 стального цилиндра (рис. 9), набранного, как и сердечник статора, из листов электротехнической стали (рис. 10) толщиной 0,5 мм. После штамповки листы собирают в пакет, плотно сжимают, насаживают на вал двигателя и закрепляют. В пазах ротора помещается или короткозамкнутая, или фазная обмотка. Изоляцией между листами ротора обычно
Рис. 9. Фазный ротор асинхронного двигателя: 1 — сердечник ротора; 2 — обмотка ротора; 3 — контактное кольцо
Рис. 10. Стальной лист ротора
Рис. 11. Продольный разрез асинхронного двигателя с фазным ротором: 1 — вал; 2 — активная сталь ротора; 3 — обмотка статора; 4 — станина; 5 — активная сталь статора; 6 — подшипниковый щит; 7 — контактные кольца; 8 — щетки; 9 — коробка выводов
Рис. 12. Трехфазный асинхронный двигатель с фазным ротором
Рис. 13. Короткозамкнутый ротор двигателя с алюминиевой литой обмоткой
Рис. 14. Беличье колесо
Рис. 15. Трехфазный асинхронный короткозамкнутый двигатель
Рис. 16. Роторы короткозамкнутые: а — с обычной клеткой; б — с двойной клеткой; в — с глубокой клеткой
служит пленка окисла. Активная сталь ротора является частью магнитной цепи двигателя. Обмотка может быть фазной, построенной по тому же принципу, что и обмотка статора. Делается это в том случае, когда в фазы обмотки включается добавочное сопротивление (реостат), необходимый при пуске или регулирования скорости двигателя. Фазный ротор показан на (рис. 9). Обмотка ротора 2 соединяется в звезду, а выводы подключаются к трем контактным кольцам 3, насаженным на вал ротора и изолированным от вала и друг от друга. Контактные кольца изготавливаются из меди, бронзы, редко из стали.
Продольный разрез двигателя с фазным ротором показан на рис. 11.
Чаще изготовляются двигатели с короткозамкнутой обмоткой ротора. Если в пазы ротора уложены голые медные или алюминиевые стержни, концы которых замкнуты накоротко кольцами, то такая обмотка называется короткозамкнутой. Обмотка образует клетку, называемую беличьей; показана отдельно на рис. 14. Короткозамкнутую обмотку ротора делают в трех модификациях: с нормальной клеткой, с двойной клеткой и с глубоким пазом (рис. 16). Для двигателей до 100 кВт чаще всего клетку получают путем отливки из алюминия, при этом одновременно отливаются торцевые кольца и лопасти вентилятора для охлаждения двигателя (рис. 13). Роторные обмотки также выполняют из меди и ее сплавов. В пазы прямоугольной или трапецеидальной формы забивают стержни, к стержням с обеих сторон припаивают твердым припоем замыкающие кольца.
Вид двигателя с фазным ротором и с короткозамкнутым, имеющим внешний обдув для охлаждения, показан на рис. 12 и 15.