в

Чем отличается проводник от полупроводника?

Чем отличаются проводники от диэлектриков и полупроводников

Что такое проводники и диэлектрики

Проводники это вещества, имеющие в своей структуре массу свободных электрических зарядов, способных перемещаться под воздействием внешней силы по всему объёму материала.

К группе проводников в электростатическом поле относят металлы и их соединения, некоторые виды электротехнического угля, растворы солей (кислот, щелочей), ионизированные газы.

Лучшим проводящим материалом считается металл, например, золото, платина, медь, алюминий. К неметаллическим веществам, проводящим ток, относится углерод.

Проводник

Диэлектрики – вещества, противоположные по своим свойствам проводникам. При отсутствии нагревания заряженные частицы в нейтральном атоме тесно взаимосвязаны и не могут осуществлять движения в объеме материала. В связи с этим электрический ток в непроводнике протекать не может.

Диэлектрик

К материалам, непроводящим электрический ток, относят: керамику, резину, бумагу, стекло, фарфор, смолу, сухую древесину. Лучшим диэлектриком считается газ. Качества диэлектриков зависят от температуры и влажности среды, в которой они находятся.

Проводники и диэлектрики активно используют в электротехнической области. Пример – материалом, из которого производят провода (кабели), служат проводники, изготовленные из металла. Изолирующие оболочки для них производят из диэлектриков – полимеров.

Свойства материалов

Лучшими считаются проводники, сырьем для производства которых послужило серебро, золото или платина. Повсеместное их использование ограничивается только большой стоимостью материала. Такие изделия нашли применение в оборонной и космической промышленности

В этих сферах важно обеспечение самого высокого качества оборудования, независимо от его стоимости

Гораздо шире область применения медных и алюминиевых материалов. Невысокая стоимость и отличные проводящие качества позволили использовать их во многих отраслях хозяйствования.

В диэлектриках повышение температуры может приводить к возникновению свободных электрических зарядов. Это электроны, оторвавшиеся от ядра из-за температурных колебаний. Обычно это небольшое количество свободных зарядов. Но существуют изоляторы, в которых это число достигает существенных размеров. В этом случае изоляционные качества диэлектрика ухудшаются.

Обратите внимание! Надежным считается диэлектрик, если возникающий в нём небольшой ток утечки не мешает работе всей системы. Лучшим диэлектриком считается абсолютный вакуум, а также полностью очищенная вода

Но таковых в природе не найти, а создать их искусственным путём очень сложно

Включение в жидкость любой примеси обеспечивает ей проводящие качества

Но таковых в природе не найти, а создать их искусственным путём очень сложно. Включение в жидкость любой примеси обеспечивает ей проводящие качества

Лучшим диэлектриком считается абсолютный вакуум, а также полностью очищенная вода. Но таковых в природе не найти, а создать их искусственным путём очень сложно. Включение в жидкость любой примеси обеспечивает ей проводящие качества.

Кабеля и их классификация

Кабель – это одна жила или группа жил с изолирующим слоем, которые определенным образом сплетены между собой и заключены в единую одну или несколько оболочек. Могут укладываться по фасаду зданий, в воздухе на опорах (столбах), под землей и даже на дне водоемов (морей).

Внешняя оболочка может изготавливаться из различных материалов: сшитого полиэтилена, резины и даже из сплава металлов (броня) и иных веществ. Этот общий изолирующий слой кабеля призван защитить жилы от повреждений механического характера, воздействий окружающей среды и разнообразных химикатов.

Кабеля разделяются на группы по применению. Выделяют следующие классы этой продукции:

  1. Коммуникационный кабель. Такое изделия предназначается для систем сигнализации (оповещения) и проводной электросвязи (стационарная телефонная связь);
  2. Силовые изделия. Этот класс предназначен для перемещения электрической энергии от источника к конечному потребителю. Обычно прокладываются стационарно, образуя разнотипные линии электропередач (ЛЭП). Жилы в основном изготавливаются из алюминия и меди. Отличаются огромным модельным разнообразием и долгим сроком службы – до 40 лет;
  3. Монтажные электрокабеля (контрольные). Эта продукция необходима для межприборной установки электроустройств. Токопроводящие жилы обычно изготавливаются из медного соединения. Главное достоинство – высокая устойчивость к работе в повышенных температурах;
  4. Кабеля управления. Эти изделия применяются для освещения и схем управления в сложных механизмах и станках. Максимальное напряжение – 600В;
  5. Оптические и радиочастотные варианты. Такие электрокабеля служат для передачи сигналов и энергии в установленном оптическом диапазоне или на конкретных радиочастотах. Пример использования – сеть интернет, современная телефонная связь, локационное оборудование.

На заметку.
Иногда кабели связи, оптические и радиочастотные аналоги относят к одной большой группе – коммуникационные электрокабеля.

Кабельная продукция также отличается между собой по нижеследующим признакам:

  • материал изготовления и свойства изолирующего слоя (слоев);
  • параметры экранирования;
  • технические характеристики, выраженные электрофизическими величинами;
  • материал изготовления и количество токопроводящих жил;
  • общее сечение изделия, диаметр жил и прочие.

Описание проводников

Проводники обладают наивысшей электропроводностью из всех типов веществ. Все проводники подразделяются на две большие подгруппы:

  • Металлы (медь, алюминий, серебро) и их сплавы.
  • Электролиты (водный раствор соли, кислоты).

В веществах первой подгруппы перемещаться способны только электроны, поскольку их связь с ядрами атомов слабая, в связи с чем, они достаточно просто от них отсоединяются. Так как в металлах возникновение тока связано с передвижением свободных электронов, то тип электропроводности в них называется электронным.

Параллельное соединение проводников

Из проводников первой подгруппы используют в обмотках электромашин, линиях электропередач, проводах

Важно отметить, что на электропроводность металлов оказывает влияние его чистота и отсутствие примесей

Движиение электрического тока

В веществах второй подгруппы при воздействии раствора происходит распадение молекулы на положительный и отрицательный ион. Ионы перемещаются вследствие воздействия электрического поля. Затем, когда ток проходит через электролит, происходит осаждение ионов на электроде, который опускается в данный электролит. Процесс, когда из электролита под воздействием электрического тока выделяется вещество, получил название электролиз. Процесс электролиза принято применять, к примеру, когда добывается цветной металл из раствора его соединения, либо при покрытии металла защитным слоем иных металлов.

Полупроводники.

Рис. 3

От диэлектрика полупроводник отличается только тем, что ширина Δ запрещенной зоны, отделяющей валентную зону от зоны проводимости, у него много меньше (в десятки раз). При T = 0 валентная зона в полупроводнике, как и в диэлектрике, целиком заполнена, и ток по образцу течь не может. Но благодаря тому, что энергия Δ невелика, уже при незначительном повышении температуры часть электронов может перейти в зону проводимости (рис. 3). Тогда электрический ток в веществе станет возможным, причем сразу по двум «каналам».

Во-первых, в зоне проводимости электроны, приобретая энергию в электрическом поле, переходят на более высокие энергетические уровни. Во-вторых, вклад в электрический ток дают… пустые уровни, оставленные в валентной зоне электронами, ушедшими в зону проводимости. Действительно, принцип Паули разрешает любому электрону занять освободившийся уровень в валентной зоне. Но, заняв этот уровень, он оставляет свободным свой собственный уровень и т. д. Если следить не за движением электронов по уровням в валентной зоне, а за движением самих пустых уровней, то оказывается, что эти уровни, имеющие научное название дырки, тоже становятся носителями тока. Число дырок, очевидно, равно числу электронов, ушедших в зону проводимости (так называемых электронов проводимости), но дырки обладают положительным зарядом, потому что дырка — это отсутствующий электрон.

Таким образом, в полупроводнике электрический ток — это ток электронов в зоне проводимости и дырок в валентной зоне. Такая проводимость полупроводника называется собственной.

Электроны и дырки при движении по кристаллу взаимодействуют с атомами кристаллической решетки, теряя при этом свою энергию. С этими потерями связано электрическое сопротивление вещества. При увеличении температуры потери энергии возрастают, так что сопротивление полупроводника должно было бы с ростом температуры тоже увеличиваться. Но при повышении температуры растет число электронов, переходящих в зону проводимости, а следовательно, и число дырок r валентной зоне. Это значит, что растет (и очень быстро) общее число носителей тока. Из-за этого сопротивление полупроводника с повышением температуры не растет, а падает. Полупроводник и можно определить как вещество, практически не проводящее ток при абсолютном нуле температур, но сопротивление которого с ростом температуры резко падает.

В природе, однако, полупроводников с собственной проводимостью не существует: в них всегда имеются примеси других веществ, которые и определяют их электрические свойства. Наличие примесей приводит к тому, что в запрещенной зоне полупроводника появляются дополнительные энергетические уровни, с которых или на которые тоже возможны электронные переходы. Широкое применение полупроводников в технике стало возможным только после того, как технологи научились управлять содержанием примесей в полупроводниках и по своему усмотрению делать их проводимость (примесную проводимость) почти чисто электронной или чисто дырочной.

Рис. 4

Оказывается, можно подобрать такие примеси, атомы которых легко отдают электроны. Освободившиеся при этом дополнительные уровни энергии располагаются внутри запрещенной зоны полупроводника вблизи ее верхнего края (рис. 4, а). Такие примеси называются донорными примесями, а уровни — донорными уровнями. Из рисунка 4, а видно, что при одной и той же температуре электронам с таких уровней гораздо легче перейти в зону проводимости, чем электронам из валентной зоны, поэтому примесные уровни и станут основными поставщиками электронов в зону проводимости. Но при этом в валентной зоне дырок появляться не будет, и проводимость полупроводника станет почти чисто электронной. Такие полупроводники называются полупроводниками n-типа.

Существуют и такие примеси, атомы которых легко присоединяют к себе электроны (акцепторные примеси). Дополнительные уровни их электронов (акцепторные уровни) тоже располагаются внутри запрещенной зоны полупроводника, но вблизи ее дна (рис. 4, б). В этом случае электронам из валентной зоны легче перейти на акцепторные уровни примеси, чем в зону проводимости. Тогда в валентной зоне появятся дырки без того, чтобы в зоне проводимости появились электроны. Получится полупроводник с почти чисто дырочной проводимостью, или полупроводник p-типа.

Наиболее известные полупроводниковые материалы — это германий и кремний, а их главные технические применения как раз и связаны с возможностью создания образцов n- и p-типов («Физика 9», с. 212).

Определение полупроводника в электротехнике

Полупроводники — это материалы, обладающие свойствами проводников и изоляторов одновременно. Они обладают средним уровнем проводимости, что позволяет им изменять свою проводимость в зависимости от внешних условий.

В отличие от проводников, которые обладают высокой проводимостью электрического тока, полупроводники могут иметь различные уровни проводимости — от очень низкой до высокой. Они обладают определенной электрической проводимостью только при определенных условиях.

Полупроводники широко применяются в электротехнике и электронике, так как они обладают уникальными свойствами. Например, они могут быть использованы для создания полупроводниковых приборов, таких как диоды или транзисторы, которые являются основой многих электронных устройств.

Полупроводниковые материалы обладают двумя основными типами проводимости — «p-тип» (позитивный тип) и «n-тип» (негативный тип). В материалах «p-типа» проводимость осуществляется за счет дырок (отсутствие электронов), а в материалах «n-типа» проводимость осуществляется за счет остаточных электронов.

Чтобы управлять проводимостью полупроводников, используют различные методы, включая добавление примесей или применение электрического поля. Благодаря этим методам полупроводники могут быть использованы для создания различных электронных устройств с широким спектром функциональности и возможностей.

Таким образом, полупроводники представляют собой важный класс материалов, которые играют значительную роль в современной электротехнике и электронике. Их уникальные свойства и возможность изменения проводимости под различными условиями позволяют создавать более эффективные и гибкие электронные устройства.

Перейдем к диэлектрикам

В жизни такими веществами выступают резина, керамические компоненты, стекло, отдельные виды смол, дистиллированная вода,  карбонит, фарфор, текстолит, а так же сухое дерево и так далее.

Именно благодаря свои свойствам, вышеперечисленные материалы являются основой корпусов различных электрических приборов, выключателей, розеток, вилок и других приспособлений, которые контактируют с электричеством непосредственно.

Изоляционные элементы в сетях также изготовляются из диэлектрических материалов.

То есть, если в двух словах описать ситуацию, то основное в диэлектрике — это его электроизоляционные способности. Таким образом эти приборы помогают нам защититься от травмирующего воздействия электричества.

Свойства диэлектрика измеряются его электрической прочностью — это показатель, который равняется с напряжением пробоя диэлектрика.

Отличие кабеля от провода

Какое же у этих изделий сходство или различие? Визуально они очень похожи, но по документации эти изделия проходят под разными наименованиями – «провод» и «кабель». А если заглянуть в строительную смету, то там четко видно, что провод стоит дешевле, чем кабель.

В различной спецлитературе, учебниках и справочниках даются определения этим понятиям, но они довольно пространные. Зато в ТУ и ГОСТ есть характеристика изделий, относящихся к «проводу» или к «кабелю».

В ТУ зачастую можно найти лишь небольшие детали, по которым необходимо различать кабель и провод. Например, форма (плоская или круглая), толщина оболочки, изоляция, количество жил.

Если говорить о форме, то она не несет специфической нагрузке. От формы изделия зависит разве что удобство использования в конкретной ситуации. Определяющим фактом в делении на провод или кабель является спецификация. В ней указано конкретно, какое это изделие.

Слова « кабель» и «провод» часто используются в описаниях электропроводки и электрических сетей, когда имеется в виду проводник электрического тока. Может показаться, что эти два изделия – одно и тоже. Но между ними есть разница, которая будет описана ниже.

Что представляет собой провод
? В электротехнике так называют многожильный или одножильный проводник, который имеет легкую трубчатую изоляцию, либо вовсе ее не имеет.

Кабель представляет собой
систему изолированных проводников, которые для удобства монтажа и эксплуатации, а также для защиты от влияния окружающей среды и механических повреждений объединены в единую конструкцию. Для повышения безопасности использования электрических проводов, для облегчения их совместной прокладки, для обеспечения защиты при эксплуатации в сложных условиях электрические провода собирают вместе. На них «одевается» дополнительный слой изоляции. Кабель защищают броневым кожухом при необходимости.

Итак, провод – это одни проводник, а кабель – это две или более изолированные жилы, объединенные вместе. Помимо изоляции жил кабель имеет изоляционную оболочку. Если на двух или более проводниках нет никакой изоляции, то перед вами просто проводник, по классификации – это «провод», а не «кабель».

Все провода и кабели можно разделить на несколько категорий в зависимости от характеристик изделия, особенностей конструкции и материалов, используемых при изготовлении.

Провода делятся на две группы:

  1. – многожильный провод, например, ПВ-3 – гибкий провод из меди;
  2. – из сплошной проволоки (монолит), например, ПВ-1 – однопроволочный провод из меди.

От коэффициента гибкости и уровня сопротивления зависят требования к эксплуатации и применение провода. Одножильные твердые провода могут быть как без оболочки, «голыми», так и в оболочке. Благодаря своей конструкции такой тип провода предполагает уменьшение сопротивления. Если за цель ставится увеличение производительности на высоких частотах, то обычно прибегают к использованию подобных твердых проводников.

Первый тип провода представляет собой множество токопроводящих жил. Этот провод состоит из нескольких нитей медной проволоки, которые сплетены в единое целое. При внешних механических воздействиях, а также при частых перегибах такое строение провода помогает увеличить срок эксплуатации изделия и достичь существенной гибкости.

И наконец мы дошли до полупроводников

Свои свойства полупроводник имеет потому, что в его структуре очень мало частиц, являющихся свободными носителями, а может быть такое, что их там вовсе нет. Но, стоит повлиять на них определенной энергией — и они появляются и активно двигаются.

Энергия может быть не только электрической, также можно воздействовать тепловой энергией, или различными излучениями. Например, свободно движущиеся элементы появляются при влиянии излучения в УФ-Спектре.

Материалами с такими свойствами являются германий, кремний, так же это может быть смешение арсенида и гелия, мышьяк, селен и прочие.

Применение полупроводников может быть различное. Из данного материала делают микросхемы, светодиоды, транзисторы, диоды и многое другое.

Для того, чтоб более подробно объяснить работу полупроводника, применим к нему так называемую зонную теорию. Упомянутая теория объясняет существование или неимение свободных заряженных частиц в отношении конкретных энергетических уровней.

Энергетический уровень (слой) — это число простых частиц, таких как молекул, атомов, то есть электронов. Данный показатель измеряется в Электронвольтах (ЭВ).

Следует обратить внимание на то, что слои проводника составляют непрерывную диаграмму от зоны валентности и до зоны проводимости. Если эти две зоны осуществляют накладку друг на друга, то возникает зона перекрытия

В соответствии с влиянием некоторых влияний, например электрических полей, температурного режима и прочего, число электронов может меняться.

Исходя из вышеописанных процессов электроны при минимальной энергетическом воздействии начинают движение в проводнике.

Полупроводники между двумя вышеупомянутыми зонами имеют еще зону запрещенную. Величина данной зоны показывает количество той энергии, которой будет достаточно для проведения тока.

Диэлектрики по структуре похожи на полупроводники, но их защитный шар намного больше благодаря внутренним связям материала.

Мы рассказали о главных свойствах проводников, полупроводников и диэлектриков. Можно сделать вывод, что отличаются они друг от друга своей проводимостью тока. Именно из-за этого у каждого материала есть своя зона применения.

Так, проводники применяются там, где нужна стопроцентная проводимость тока.

Использование диэлектриков приходится на изготовление различной  изоляции токопроводящих участков.

Ну, а полупроводники активно применяют в электронике.

Думаем, данная статья раскрыла перед вами все нюансы работы проводников, диэлектриков и полупроводников, их основные отличия и сферы применения.

Презентация на тему: ” Проводники и диэлектрики По электрическим свойствам (уровню подвижности заряженных частиц) вещества деление проводники диэлектрики полупроводники.” — Транскрипт:

2

Проводники и диэлектрики По электрическим свойствам (уровню подвижности заряженных частиц) вещества деление проводники диэлектрики полупроводники

3

Проводники и диэлектрики все металлы Имеются заряженные частицы (заряды частиц = свободные заряды) Способные перемещаться внутри проводника под действием электрического поля Проводники Диэлектрики Состоят из нейтральных в целом атомов или молекул Заряженные частицы связаны друг с другом и не могут перемещаться под действием поля по всему объему тела

4

Проводники и диэлектрики Свободные заряды – заряженные частицы одного знака, способные перемещаться под действием электрического поля Не могут возникнуть, если энергия связи электрона со своим атомом велика по сравнению с энергией взаимодействия с соседними атомами вещества СВЯЗАННЫЕ ЗАРЯДЫ

5

Проводники и диэлектрики – вещество, в котором свободные заряды могут перемещаться по всему объему ПРОВОДНИК металлы растворы солей, кислот, щелочей Влажный воздух плазма Тело человека

6

Проводники В металлах носители свободных зарядов = электроны При образовании металла из нейтральных атомов атомы взаимодействуют друг с другом электроны внешних оболочек атомов полностью утрачивают связи со своими атомами и становятся собственностью всего проводника в целом положительные ионы окружены отрицательно заряженным газом из электронов (взаимодействие кулоновское)

7

Проводники электрические заряды неподвижны! поле внутри проводника = 0 в проводнике – свободные заряды существовал бы электрический ток E 0 иначе НЕТ ТОКА – НЕТ И ПОЛЯ!!!

8

Проводники заряженный незаряженный, помещенный во внешнее электрическое поле ПРОВОДНИК ВНУТРИ E = 0 (поле отсутствует)

9

Проводники уничтожение электростатического поля в проводнике Электрическое поле Проводящий шар Сначала возникнет электрический ток, так как поле внутри шара вызывает перемещение электронов Части шара заряжаются по-разному: Левая – отрицательно; Правая – положительно (явление электростатической индукции) Эти заряды на поверхности проводника создают электрическое поле, которое накладывается на внешнее поле и компенсирует его

10

Проводники уничтожение электростатического поля в проводнике Линии электростатического поля вне проводника перпендикулярны его поверхности – иначе по поверхности бы протекал электрический ток

11

Диэлектрики – вещество, содержащее только связанные заряды

12

Диэлектрики – вещество, содержащее только связанные заряды ДИЭЛЕКТРИК

13

Диэлектрики – разноименные заряды, входящие в состав атомов (или молекул), которые не могут перемещаться под действием электрического поля независимо друг от друга СВЯЗАННЫЕ ЗАРЯДЫ

14

Диэлектрики полностью отсутствуют!!! СВОБОДНЫЕ ЗАРЯДЫ диэлектрик практически не проводит электрический ток ХОРОШИЙ ИЗОЛЯТОР!!!

15

Диэлектрики ГАЗЫ ДИЭЛЕКТРИКИ НЕКОТОРЫЕ ЖИДКОСТИ НЕКОТОРЫЕ ТВЕРДЫЕ ТЕЛА дистиллированная вода, бензол Стекло, фарфор, слюда

16

Диэлектрики в соответствии со структурой их молекул ДИЭЛЕКТРИКИ деление полярные неполярные

17

Диэлектрики (полярные)

18

Диэлектрики (неполярные) В неполярных диэлектриках электростатическое поле сначала поляризует молекулы, растягивая в разные стороны положительные и отрицательные заряды, а затем поворачивает их оси вдоль напряженности поля

19

Диэлектрики – процесс ориентации диполей или появление под действием внешнего электрического поля ориентированных по полю диполей ПОЛЯРИЗАЦИЯ ДИЭЛЕКТРИКА

20

Диэлектрики – число, показывающее, во сколько раз напряженность электростатического поля в однородном диэлектрике меньше, чем напряженность в вакууме ОТНОСИТЕЛЬНАЯ ДИЭЛЕКТРИЧЕСКАЯ ПРОНИЦАЕМОСТЬ СРЕДЫ

21

Диэлектрики Уменьшение напряженности электростатического поля в диэлектрике приводит к тому, что сила взаимодействия точечных зарядов q 1 и q 2, находящихся в диэлектрике на расстоянии r друг от друга, уменьшается в ε раз:

22

Полупроводники – вещество, в котором количество свободных зарядов зависит от внешних условий (температура, напряженность электрического поля) ПОЛУПРОВОДНИК

Что представляют собой полупроводники?

Под полупроводниками
понимаются химические элементы, обладающие ограниченной способностью передавать электрический ток. Это обусловлено небольшим количеством свободных электронов, формирующихся в их структуре при подключении электродов.

Типичными полупроводниками считаются такие химические элементы, как кремний – относящийся, в частности, к 4-й группе веществ по периодической системе Д. И. Менделеева. На внешней оболочке кремния располагается 4 электрона, классифицируемых как валентные. К иным чистым полупроводникам можно отнести, к примеру, германий.

Одна из главных характеристик полупроводников – удельное сопротивление. Оно может находиться в интервале от 10 в 4 до 10 в минус 5 степени Ом на метр. Для того чтобы понизить удельное сопротивление рассматриваемых элементов, в их состав могут быть включены легирующие примеси. Такие как, например, бор и мышьяк.

Если легирование полупроводников осуществляется посредством элементов 3-й группы по таблице Менделеева (в частности, при использовании бора), то полупроводник будет классифицирован как относящийся к p-типу. У элементов 3-й группы в оболочке присутствует 3 электрона. Это значит, что в структуре кристалла легированного полупроводника из-за недостающего электрона образуются «дырки», которые при подключении тока начинают движение в обратном направлении относительно положительного контакта (к которому, в свою очередь, стремятся электроны).

Если легирование полупроводников осуществляется посредством элементов 5-й группы (например, при использовании мышьяка), то проводник будет относиться к n-типу. У элементов 5-й группы на внешней оболочке располагается 5 электронов. Поэтому при легировании полупроводника часть из них освобождается, вследствие чего элемент приобретает проводимость.

Можно отметить, что пограничная область, располагающаяся между полупроводниками p-типа и n-типа, обладает свойством проводить ток только при подключении электродов в определенном положении. Благодаря данной особенности функционируют различные электронные компоненты, в составе которых используются полупроводниковые вещества, – диоды, транзисторы.

Еще одно примечательное свойство рассматриваемых элементов – усиление проводимости по мере увеличения температуры.

Сравнение

В проводниках в отличие от диэлектриков, высокая концентрация свободных электрических зарядов. В металлах таковыми являются свободные электроны, которые способны передвигаться по всему объёму вещества. Возникновение свободных электронов обусловлено тем, что валентные электроны в атомах металлов весьма плохо взаимодействуют с ядрами и легко теряют связь с ними.

У диэлектриков, напротив, электроны с атомами крепко связаны и не имеют возможности свободно перемещаться под воздействием электрического поля. И так как количество свободных заряженных носителей в диэлектриках ничтожно мало, из этого следует, что в них отсутствует электростатическая индукция, и напряжённость электрического поля внутри диэлектриков не превращается в ноль, а только уменьшается.

Напряжённость нельзя повышать безгранично, т. к. при определенной величине все заряды могут сместиться настолько, что произойдет изменение структуры материала, иными словами, произойдет пробой диэлектрика. В этом случае он потеряет свои изоляционные свойства.

Полупроводник в электротехнике: в чем его отличие от проводника?

Полупроводники играют важную роль в электротехнике, особенно в разработке полупроводниковых элементов, таких как диоды и транзисторы. Они отличаются от проводников и изоляторов по своей уникальной способности контролировать поток электрического тока.

1. Проводимость:

Главное отличие полупроводников от проводников заключается в их проводимости. Проводники, такие как металлы, имеют высокую проводимость, позволяющую свободному движению электронов. В то же время, полупроводники имеют среднюю проводимость, между проводниками и изоляторами. Это связано с тем, что у полупроводников есть энергетические зоны, которые могут быть заполнены электронами или оставлены пустыми в зависимости от внешних условий.

2. Заполнение энергетической зоны:

У проводников энергетическая зона, которая содержит свободные электроны, полностью заполнена. У изоляторов эта зона полностью пуста. У полупроводников эта зона частично заполнена, что позволяет свободному движению электронов при подаче определенного количества энергии.

3. Доминирующий тип проводимости:

В зависимости от материала полупроводника, он может быть типа N или P. Тип N означает, что полупроводник обладает свободными электронами, которые осуществляют основной ток. Тип P означает, что полупроводник обладает дырками, которые являются доминирующими носителями заряда.

4. Использование полупроводников в электротехнике:

Полупроводники играют ключевую роль в различных устройствах электротехники. Они используются для создания диодов, транзисторов, солнечных батарей и других электронных компонентов. Благодаря их способности контролировать поток электрического тока, полупроводники обеспечивают эффективность и функциональность электронных устройств.

В заключение, полупроводники отличаются от проводников своей проводимостью, способностью заполнять энергетическую зону и доминирующим типом проводимости. Их уникальные свойства позволяют использовать их в различных устройствах электротехники, делая их незаменимыми в современном мире технологий.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

банные принадлежности

Отличие бани от сауны