Таблица основных различий между митозом и мейозом
Сравниваемые характеристики | Митоз | Мейоз |
Деление клеток | Соматическая клетка делится один раз. Цитокинез (разделение цитоплазмы) происходит в конце телофазы. | Половая клетка, как правило делится дважды. Цитокинез происходит в конце телофазы I и телофазы II. |
Дочерние клетки | Производится две дочерние диплоидные клетки, содержащие полный набор хромосом. | Производится четыре дочерние клетки. Каждая клетка представляет собой гаплоид, содержащий половину числа хромосом от родительской клетки. |
Генетическая композиция | Полученные в митозе дочерние клетки являются генетическими клонами (они генетически идентичны). Не происходит рекомбинации или перекрестка. | Полученные в мейозе дочерние клетки содержат различные комбинации генов. Генетическая рекомбинация происходит в результате случайной сегрегации гомологичных хромосом в разные клетки и путем перехода (переноса генов между гомологичными хромосомами). |
Длительность профазы | Во время первой митотической стадии, известной как профаза, хроматин конденсируется в дискретные хромосомы, ядерная оболочка ломается, а волокна веретена деления формируются на противоположных полюсах клетки. Клетка проводит меньше времени в профазе митоза, чем клетка в профазе I мейоза. | Профаза I состоит из пяти этапов и длится дольше, чем профаза митоза. Этапы мейотической профазы I включают: лептотен, зиготен, пахитен, диплотен и диакинез. Эти пять стадий не происходят при митозе. Генетическая рекомбинация и скрещивание происходят во время профазы I. |
Образование тетрада (бивалента) | Тетрада не образовывается. | В профазе I пары гомологичных хромосом выстраиваются близко друг к другу, образуя так называемую тетраду, которая состоит из четырех хроматид (два набора сестринских хроматид). |
Согласование хромосом в метафазе | Сестринские хроматиды (дублированная хромосома, состоящая из двух идентичных хромосом, соединенных в области центромера) выровнены на метафазной пластине (плоскость, которая одинаково удалена от двух полюсов клетки). | Тетрада гомологичных хромосом выравнивается на метафазной пластинке в метафазе I. |
Разделение хромосом | Во время анафазы сестринские хроматиды разделяются и начинают мигрировать к противоположным полюсам клетки. Отделяемая сестринская хроматида становится полной хромосомой дочерней клетки. | Гомологичные хромосомы мигрируют к противоположным полюсам клетки во время анафазы I. Сестринские хроматиды не разделяются в анафазе I. |
Митоз и мейоз в эволюции
Обычно мутации в ДНК соматических клеток, которые подвергаются митозу, не передаются потомству и поэтому не применимы к естественному отбору и не способствуют эволюции вида. Однако ошибки в мейозе и случайное смешивание генов и хромосом в течение всего процесса, действительно способствуют генетическому разнообразию и приводит к эволюции. Пересечение создает новую комбинацию генов, которые могут кодировать благоприятную адаптацию.
Кроме того, независимый ассортимент хромосом во время метафазы I также приводит к генетическому разнообразию. Гомологичные пары хромосом выстраиваются в линию на этом этапе, поэтому смешивание и сопоставление признаков имеет много вариантов, что способствует разнообразию. Наконец, случайное оплодотворение также может увеличить генетическое разнообразие. Поскольку в конце мейоза II образовывается четыре генетически разных гамета, которые фактически используются во время оплодотворения. По мере того, как имеющиеся признаки смешиваются и передаются, естественный отбор воздействует на них и выбирает наиболее благоприятные адаптации в качестве предпочтительных фенотипов индивидуумов.
Мне нравится2Не нравится
Стадии мейоза
Процесс возникновения репродукционных клеток происходит на протяжении двух стадий:
- профаза мейоза 1;
- профаза мейоза 2.
Клетка, прежде чем вступить в решающую стадию, проходит подготовительный период, называемый интерфазой. Данный короткий период в свою очередь делится на три стадии:
- G1 происходит перед удвоением хромосом ДНК. Клетка значительно увеличивается в размерах, готовясь к делению;
- S характеризуется синтезом ДНК-цепочки и происходит для большинства организмов стремительно;
- G2 является коротким периодом после разделения цепочки, но до начала деления клетки. Клетка увеличивает содержание белков в своей структуре и растет. У нее все еще сохраняются нуклеолы, а ядро остается под защитой мембраны. Клеточные хромосомы удваиваются, но продолжают иметь вид хроматина.
Окончание интерфазы знаменуется началом клеточного деления.
Мейоз и митоз – отличие, фазы
Мейоз — это деление в зоне созревания половых клеток, сопровождающееся уменьшением числа хромосом вдвое. Он состоит из двух последовательно идущих делений, имеющих те же фазы, что и митоз.
Однако, как показано в таблице «Сравнение митоза и мейоза», продолжительность отдельных фаз и происходящие в них процессы значительно отличаются от процессов, происходящих при митозе.
Эти отличия в основном состоят в следующем.
В мейозе профаза I более продолжительна. В ней происходит конъюгация (соединение гомологичных хромосом) и обмен генетической информацией. В анафазе Iцентромеры, скрепляющие хроматиды, не делятся, а к полюсам отходит одна из гомологмейоза митоза и ичных хромосом.
Интерфаза перед вторым делением очень короткая, в ней ДНК не синтезируется. Клетки (галиты), образующиеся в результате двух мейотических делений, содержат гаплоидный (одинарный) набор хромосом. Диплоидность восстанавливается при слиянии двух клеток — материнской и отцовской.
Оплодотворенную яйцеклетку называют зиготой.
Митоз и его фазы
Митоз, или непрямое деление, наиболее широко распространен в природе. Митоз лежит в основе деления всех неполовых клеток (эпителиальных, мышечных, нервных, костных и др.). Митоз состоит из четырех последовательных фаз (см.
далее таблицу). Благодаря митозу обеспечивается равномерное распределение генетической информации родительской клетки между дочерними. Период жизни клетки между двумя митозами называют интерфазой. Она в десятки раз продолжительнее митоза.
В ней совершается ряд очень важных процессов, предшествующих делению клетки: синтезируются молекулы АТФ и белков, удваивается каждая хромосома, образуя две сестринские хроматиды, скрепленные общей центромерой, увеличивается число основных органоидов цитоплазмы.
В профазе спиралируются и вследствие этого утолщаются хромосомы, состоящие из двух сестринских хроматид, удерживаемых вместе центромерой.
К концу профазы ядерная мембрана и ядрышки исчезают и хромосомы рассредоточиваются по всей клетке, центриоли отходят к полюсам и образуют веретено деления. В метафазе происходит дальнейшая спирализация хромосом.
В эту фазу они наиболее хорошо видны. Их центромеры располагаются по экватору. К ним прикрепляются нити веретена деления.
В анафазе центромеры делятся, сестринские хроматиды отделяются друг от друга и за счет сокращения нитей веретена отходят к противоположным полюсам клетки.
В телофазе цитоплазма делится, хромосомы раскручиваются, вновь образуются ядрышки и ядерные мембраны. В животных клетках цитоплазма перешнуровывается, в растительных — в центре материнской клетки образуется перегородка. Так из одной исходной клетки (материнской) образуются две новые дочерние.
Мейоз и митоз
Фаза | Митоз | Мейоз | |
1 деление | 2 деление | ||
Интерфаза | Набор хромосом 2n.Идет интенсивный синтез белков, АТФ и других органических веществ.Удваиваются хромосомы, каждая оказывается состоящей из двух сестринских хроматид, скрепленных общей центромерой. | Набор хромосом 2n Наблюдаются те же процессы, что и в митозе, но более продолжительна, особенно при образовании яйцеклеток. | Набор хромосом гаплоидный (n). Синтез органических веществ отсутствует. |
Профаза | Непродолжительна, происходит спирализация хромосом, исчезают ядерная оболочка, ядрышко, образуется веретено деления. | Более длительна. В начале фазы те же процессы, что и в митозе. Кроме того, происходит конъюгация хромосом, при которой гомологичные хромосомы сближаются по всей длине и скручиваются. При этом может происходить обмен генетической информацией (перекрест хромосом) — кроссинговер. Затем хромосомы расходятся. | Короткая; те же процессы, что и в митозе, но при n хромосом. |
Метафаза | Происходит дальнейшая спирализация хромосом, их центромеры располагаются по экватору. | Происходят процессы, аналогичные тем, что и в митозе. | Происходит то же, что и в митозе, но при n хромосом. |
Анафаза | Центромеры, скрепляющие сестринские хроматиды, делятся, каждая из них становится новой хромосомой и отходит к противоположным полюсам. | Центромеры не делятся. К противоположным полюсам отходит одна из гомологичных хромосом, состоящая из двух хроматид, скрепленных общей центромерой. | Происходит то же, что и в митозе, но при n хромосом. |
Телофаза | Делится цитоплазма, образуются две дочерние клетки, каждая с диплоидным набором хромосом. Исчезает веретено деления, формируются ядрышки. | Длится недолго Гомологичные хромосомы попадают в разные клетки с гаплоидным набором хромосом. Цитоплазма делится не всегда. | Делится цитоплазма. После двух мейотических делений образуется 4 клетки с гаплоидным набором хромосом. |
Таблица сравнения митоза и мейоза: TablMM.rar
Должность [ править ]
Классификации хромосом
я | Телоцентрический | Центромеры расположены очень близко к верхушке, p руки едва видны, если видны вообще. |
II | Акроцентрический | Плечи q по-прежнему намного длиннее, чем плечи p, но плечи p длиннее, чем у телоцентрических. |
III | Субметацентрический | Плечи p и q очень близки по длине, но не равны. |
IV | Метацентрический | Плечи p и q равны по длине. |
A : Короткое плечо (p-плечо) B : Центромера C : Длинное плечо (q-плечо) D : Сестринские хроматиды
Каждая хромосома имеет два плеча, обозначенных p (более короткое из двух) и q (более длинное). Многие помнят, что короткая рука «p» названа в честь французского слова «petit», означающего «маленький», хотя это объяснение оказалось апокрифическим. Они могут быть соединены метацентрическим, субметацентрическим, акроцентрическим или телоцентрическим способом.
Категоризация хромосом по относительной длине плеч | |||
Положение центромеры | Соотношение длины рук | Знак | Описание |
Medial sensu stricto | 1,0 — 1,6 | M | Метацентрический |
Медиальная область | 1,7 | м | Метацентрический |
Submedial | 3.0 | см | Субметацентрический |
Субтерминал | 3,1 — 6,9 | ул | Субтелоцентрический |
Терминальный регион | 7.0 | т | Акроцентрический |
Terminal sensu stricto | ∞ | Т | Телоцентрический |
Заметки | — | Метацентрический : M + m | Ателоцентрический : M + m + sm + st + t |
Метацентрический править
Это Х-образные хромосомы с центромерой посередине, так что два плеча хромосом почти равны.
Хромосома является метацентрической, если ее два плеча примерно равны по длине. В нормальном кариотипе человека пять хромосом считаются метацентрическими: хромосомы 1, 3, 16, 19 и 20. В некоторых случаях метацентрическая хромосома образуется путем сбалансированной транслокации: слияния двух акроцентрических хромосом с образованием одной метацентрической хромосомы.
Акроцентрический править
Если p (короткое) плечо настолько короткое, что его трудно наблюдать, но оно все еще присутствует, тогда хромосома акроцентрическая (« акро- » в слове «акроцентрический» относится к греческому слову «пик»). Геном человека включает в себя пять акроцентрической хромосомы: 13 , 14 , 15 , 21 , 22 . Y — хромосома также акроцентрическая.
В акроцентрической хромосоме p-плечо содержит генетический материал, включая повторяющиеся последовательности, такие как ядрышковые организующие области, и может перемещаться без значительного вреда, как при сбалансированной Робертсоновской транслокации . Домашняя лошадь геном включает в себя один метацентрическую хромосому, которая гомологична двум акроцентрических хромосом в конспецифическом но освоене лошади Пржевальского . Это может отражать либо фиксацию сбалансированной робертсоновской транслокации у домашних лошадей, либо, наоборот, фиксацию деления одной метацентрической хромосомы на две акроцентрические хромосомы у лошадей Пржевальского. Похожая ситуация существует между геномами человека и великой обезьяны, с сокращением двух акроцентрических хромосом у человекообразных обезьян до одной метацентрической хромосомы у человека (см. Анеуплоидия и хромосома человека 2 ).
Поразительно, что вредные транслокации в контексте заболевания, особенно несбалансированные транслокации при раке крови, чаще затрагивают акроцентрические хромосомы, чем неакроцентрические хромосомы. Хотя причина неизвестна, вероятно, это связано с физическим расположением акроцентрических хромосом в ядре . Акроцентрические хромосомы обычно расположены в ядрышке и вокруг него , то есть в центре ядра, где хромосомы имеют тенденцию быть менее плотно упакованными, чем хромосомы на периферии ядра. Соответственно, хромосомные области, которые менее плотно упакованы, также более склонны к хромосомным транслокациям при раке.
Телоцентрический править
Центрера телоцентрической хромосомы расположена на конце хромосомы. Следовательно, у телецентрической хромосомы только одно плечо. Теломеры могут отходить от обоих концов хромосомы, их форма похожа на букву «i» в анафазе. Например, стандартный кариотип домовой мыши имеет только телецентрические хромосомы. Люди не обладают телоцентрическими хромосомами.
Субтелоцентрический править
Если центромера хромосомы расположена ближе к ее концу, чем к ее центру, ее можно охарактеризовать как субтелоцентрическую.
Основные этапы первого деления мейоза
1. Профаза I:
На этом этапе хромосомы становятся видимыми под микроскопом, происходит конденсация хроматина. Хромосомы гомологичных пар сцепляются и образуют биваленты. Происходит обмен генетическим материалом между однообразными хромосомами, называемый кроссинговер. Этот процесс значительно увеличивает генетическую изменчивость потомства.
2. Метафаза I:
На этом этапе биваленты выстраиваются вдоль метафазной плоскости. Каждая гомологичная пара располагается в случайном порядке, что также способствует генетической изменчивости. Микротрубочки волокна клетки крепко связываются с каждым бивалентом.
3. Анафаза I:
На этом этапе хромосомы каждой гомологичной пары начинают расходиться в противоположные полюса клетки под воздействием сил отталкивания микротрубочек. Разделение членов каждой гомологичной пары является ключевым моментом первого деления мейоза.
4. Телофаза I:
На этом этапе хромосомы достигают полюсов клетки и начинают разделяться снова. Клетка делится на две дочерних клетки, каждая из которых содержит только одну хромосому из каждой гомологичной пары. Образуются два гаплоидных набора хромосом. В некоторых организмах происходит образование цитоплазматического мостика.
Итоги:
Первое деление мейоза важно для формирования гамет, так как позволяет создавать генетически разнообразное потомство. После первого деления мейоза образуются две гаплоидные клетки, они могут пройти второе деление мейоза, чтобы получить четыре гаплоидные гаметы — сперматозоиды или яйцеклетки, готовые к оплодотворению
Профаза I
Во время профазы I происходит кроссинговер (обмен генетическим материалом) между гомологичными хромосомами, что приводит к увеличению генетического разнообразия в потомстве. Профаза I также характеризуется конденсацией хромосом, образованием специальных структур, называемых киазмами, а также разрывом ядерной оболочки и образованием спиндельного аппарата.
В лептотене хромосомы конденсируются и становятся видимыми под микроскопом. В зиготене гомологичные хромосомы соприкасаются и образуют парами, а в пахитене происходит перекрестное образование между хромосомами, что приводит к обмену генетическим материалом.
Диакинез — последняя подфаза профазы I, в которой хромосомы полностью конденсируются и становятся еще более видимыми. В этой подфазе также происходит диссоциация спиндельного аппарата и образуются ядерные оболочки вокруг каждой группы хромосом.
Таким образом, профаза I играет важную роль в мейозе, обеспечивая кроссинговер и генетическое разнообразие в потомстве.
Метафаза I
Особенностью метафазы I является образование бивалентных хромосомных пар, состоящих из двух хроматид каждой хромосомы. Каждая хромосома одной пары прикрепляется к микротрубочкам полюсов клетки с помощью структур, называемых кинетохорами.
Метафаза I также характеризуется случайным распределением хромосомных пар между двумя полюсами клетки. Это явление, называемое ассортативным (случайным) распределением, обеспечивает генетическую вариабельность в результирующих клетках мейоза.
Важно отметить, что метафаза I первого деления мейоза отличается от метафазы II второго деления. Вторая метафаза, которая происходит после интерфазы, характеризуется выравниванием одиночных хромосом вдоль метафазного диска и отсутствием образования хромосомных пар
Таким образом, метафаза I является важной стадией мейоза, в которой происходит образование бивалентных хромосом, их распределение между полюсами клетки и гарантирующая генетическую вариабельность в результирующих клетках мейоза
Анафаза I
В анафазе I происходит раздвоение хромосомных пар. Специальные структуры, называемые микротрубочками деления, тянут хромосомы в разные стороны, образуя две группы, которые в дальнейшем станут ядрами двух новых клеток.
Анафаза I характеризуется тем, что хромосомы перемещаются дальше от центральной пластины к полюсам клетки. Каждая хромосома имеет уже только одну хроматиду. На этом этапе также происходит разрыв оболочки ядра и образование двух новых ядер.
Особенностью анафазы I является случайное распределение хромосомных пар, что позволяет получать генетически разнообразные комбинации в клетках-продуктах мейоза. Этот процесс называется кроссинговером и способствует генетическому разнообразию потомства.
Редукционный этап или первое деление мейоза
Его суть — изменение числа хромосом внутри клетки. То есть из одной диплоидной (2n4c) клетки получаем две гаплоидных (1n2c). Так стоп, откуда 4c? До этого же было 2n2c. Ах да… Сейчас разберемся.
Интерфаза
Перед вступлением в мейоз клетка проходит через интерфазу. Ей нужно подготовиться к делению — запасти энергетических субстратов (АТФ), синтезировать необходимые белки и удвоить количество молекул ДНК. Еще в интерфазу происходит удваивание центромер.
Рисунок. Хромосомный набор в интерфазу
В интерфазу произошла репликация ДНК — образовалась идентичная цепь. Но эти две цепи, или хроматиды, связаны между собой при помощи центромеры, значит количество хромосом такое же. Итого набор — 2n4c
Ну вы ведь понимаете, что таким образом реплицируются все 46 хромосом. Просто удобнее показать на паре. Помните, что все 23 пар вступают в мейоз, а не только одна. После репликации начинается собственно мейоз, а именно его первая фаза:
Профаза мейоза I
В отличие от митоза состоит из пяти стадий: лептотена, зиготена, пахитена диплотена и диакинез. Она более длительная и здесь протекают важные процессы: конъюгация и кроссинговер. Еще в эту фазу растворяется ядерная оболочка и формируется веретено деления, подробнее об этом ниже.
Лептотена
Какая основная задача у клетки? Правильно, передать генетический материал своим потомкам. Поэтому она начинает упаковывать молекулы ДНК как можно плотнее, она собирает чемодан, ведь не хочет ничего не потерять в пути. Этот процесс называется спирализация или конденсация хромосомы. Клетка так старается, что невидимые раньше в микроскоп хромосомы становятся видимыми. Они похожи на длинные и тонкие нити.
Зиготена
Здесь происходит конъюгация хромосом — их сближение с образованием бивалентов. Связь обеспечивает синаптонемальный комплекс — он удерживает гомологичные хромосомы рядом это необходимо для запуска кроссинговера на следующем этапе.
Схема. Образование бивалентов.
Связи между хромосомами могут иметь разный вид, но они должны быть. Если в клетке останутся хромосомы, которые не сблизились, то она запускает апотоз и погибает. Клетка — с заботой о будущих поколениях!
Пахитена
Начинается с еще большей конденсации хромосом, они становятся короче и толще. Но в местах образования синаптонемальных комплексов происходит частичное раскручивание (деконденсация) хромосом.
Все это для начала кроссинговера — обмена участками ДНК у гомологичных хромосом. Обмен обеспечивает перекомбинацию генетического материала. Если бы мы могли рассоединить хромосомы сразу после кроссинговера, то увидели примерно такую картину:
Схема. Кроссинговер.
Это лишь схематичное изображение, перекресты могут происходить в самых разных местах , что дает огромную генетическую вариабельность.
В конце пахитены мостики между хромосомами разрушаются, они начинают отдаляться друг от друга.
Диплотена
Хромосомы расходятся в области центромер, но остаются связаны между собой в местах кроссинговера — перекрестах или хиазмах. В микроскоп можно увидеть все четыре хроматиды, так сильно они упаковались (спирализовались).
Диакинез
Гомологичные хромосомы расходятся, формируется веретено деления и исчезает ядерная оболочка. Этим завершается профаза мейоза I. Вид клетки примерно такой:
Схема. Конец профазы мейоза I
Метафаза мейоза I
В этой фазе заканчивается образование веретена деления. Нити веретена прикрепляются к центромерам и начинают притягивать хромосомы, из-за этого они располагаются на экваторе клетки.
Схема. Клетка в метафазу I
Анафаза мейоза I
Нити веретена деления продолжают тянуть хромосомы на себя — они расходятся к полюсам клетки. На полюсах клетки располагается по 23 хромосомы, но они все еще состоят из двух нитей ДНК.
Схема. Анафаза мейоза I
Телофаза мейоза I
Завершение редукционного деления. Появляется ядерная оболочка, которая окружает хромосомы. Затем возле ядер появляется перетяжка, которая делит клетку на две части. Образуются две гаплоидные клетки.
Схема. Конец первого деления мейоза
Первое деление мейоза (редукционное)
Фаза | Процессы |
Профаза I 2n4c | |
Лептотена | Хромосомы очень тонкие.Каждая хромосома состоит из двух сестринских хроматид.Визуально хромосомы неразличимы. |
Зиготена | В клетке происходит конъюгация. Во время этого процесса гомологичные хромосомы узнают друг друга и соединяются. Гомологичные хромосомы — это пара хромосом (одна материнская, другая отцовская), которые имеют один и тот же набор генов. Данные гомологичные хромосомы, соединенные в пары, принято называть бивалентами. Оболочка ядра начинает распадаться, к противоположным полюсам клетки расходятся центриоли, начинают образовываться нити веретена деления, ядрышки исчезают. |
Пахитена | Спирализация и компактизация хромосом: они утолщаются и укорачиваются. Происходит кроссинговер. Кроссинговер — процесс, в ходе которого гомологичные хромосомы обмениваются участками.Кроссинговер приводит к рекомбинации генов, то есть теперь сестринские хроматиды в каждой хромосоме неодинаковы. Поэтому братья и сестры неодинаковы, хотя у них одни и те же родители. Исключением являются однояйцевые близнецы. |
Диплотена | Хромосомы отталкиваются друг от друга в области центромеры, а в области плеч они остаются соединенными. Они как будто бы держатся за ручки парами. Хиазма — точка, в которой две гомологичные несестринские хроматиды обмениваются генетическим материалом в ходе кроссинговера. |
Диакинез | Гомологичные хромосомы отталкиваются еще сильнее и удерживаются только концами плеч. Образуется веретено деления. |
Метафаза I 2n4c | Биваленты перемещаются к экватору и выстраиваются в ряд, образуя метафазную пластинку. К центромере, к каждой двухроматидной хромосоме, прикрепляется одна нить веретена деления.Многие русские народные танцы подразумевают хоровод в своем составе. Вот в метафазу I биваленты выстраиваются хороводом по экватору клетки. |
Анафаза I 2n4c | Нити веретена деления разрывают биваленты.К противоположным полюсам клетки расходятся хромосомы. Каждая хромосома удвоена и состоит из двух сестринских хроматид.В некоторых народных танцах в определенный момент танцующие выстраиваются в две «стенки» (два ряда) напротив друг друга и расходятся назад. Также танцуют и хромосомы, расходясь к полюсам клетки. |
Телофаза I n2c | Хромосомы деспирализуются, то есть становятся тонкими. Вокруг хромосом восстанавливается оболочка ядра и ядрышко.Далее цитоплазма клетки делится (цитокинез). Образуются 2 дочерние клетки, ядра которых содержат число хромосом, уменьшенное вдвое по сравнению с материнской клеткой. |
Умеют ли хромосомы танцевать?Да. В процессе деления они передвигаются по цитоплазме клетки, будто бы совершая движения сложного и хорошо отрепетированного танца. Во время танца хромосомы могут обмениваться гомологичными участками, то есть теми участками, в которых расположены одинаковые гены. В результате таких переносов возникает множество новых комбинаций. Поэтому мы похожи немного на папу и немного на маму. |
Интерфаза
Как и в митозе, перед делением проходит подготовительная стадия – интерфаза. В ней запускаются важнейшие процессы для того, чтобы клетка могла начать клеточное деление. Клетка синтезирует органические вещества и молекулы АТФ, чтобы во время мейоза ей хватило энергии и строительного материала, удваивает некоторые органоиды и молекулы ДНК.
Вот что именно происходит во время интерфазы.
- Синтез АТФ. Энергии должно хватить на весь процесс деления, а он непростой и достаточно долгий.
- Ускорение метаболизма — синтез и накопление органических веществ, будущего строительного материала для новых клеток
- Репликация ДНК. Образование двух молекул ДНК из одной, каждая из этих молекул потом уйдет в дочернюю клетку. Удвоение ДНК – центральный процесс интерфазы, теперь в каждой хромосоме располагается по две молекулы, а набор становится 2n4c.
- Удвоение органоидов. После деления каждая клетка должна получить полный набор органоидов для оптимального функционирования.
После того, как клетка совершит все ритуалы для подготовки, она может приступать к мейозу.
Если хотите лучше понять клеточную теорию и изучить не только мейоз для ЕГЭ по биологии, но и остальные темы, приходите учиться в MAXIMUM! Записывайтесь на консультацию — вы сможете пройти диагностику по выбранным предметам ЕГЭ, поставить цели и составить стратегию подготовки, чтобы получить на экзамене высокие баллы. Все это абсолютно бесплатно!
Профаза мейоза 1
Является наиболее длительной и сложной для организма, и проходит намного дольше, чем при обычном митозе. Ведь сблизившимся половинчатым хромосомам необходимо обменяться участками ДНК.
- Конъюгация – процедура сцепки гомологичных хромосом, имеющих в своем составе лишь 1/2 от базового количества.
- Кроссинговер – процесс обмена схожими участками в составе половинчатых хромосом. Причем в процессе могут участвовать также несестринские хроматиды, имеющие идентичные участки. В узлах обмена формируются хиазмы.
Подготовленная клетка, набравшая размеры и питательные вещества, начинает свое деление.
- Хромосомы уплотняются и притягиваются к мембране ядра.
- Далее идет процесс синапсиса – сближения половинчатых хромосом и соединение их в тетрады (биваленты), которые сохраняются до начала анафазы 1. Их сцепление обеспечивается центромерами между сестринскими и хиазмами между несестринскими хроматидами.
- Соединение различных наборов хромосом способствует возникновению новых, уникальных генетических образований.
- Хромосомы продолжают объединение и отлепляются от оболочки ядра.
- Центриоли начинают взаимную миграцию на противоположные полюса клетки, а защитные оболочки ядра и ядрышек разрушаются.
- Хромосомы медленно подплывают к экваториальной плоскости клетки, выстраиваясь в четко ориентированную горизонтальную линию.
В профазе хромосомы в обязательном порядке закручиваются характерными спиралями, приобретая знакомую нам форму ДНК и ее размеры. Затем наступает период метафазы 1.
Особенности мейоза
Процесс мейоза происходит исключительно в половых клетках и завязан на репродуктивные функции. Обычно в его ходе получаются четыре дочерних клетки. Однако, если деление происходит в организме женской особи, то образуется одна-единственная яйцеклетка, имеющая крупные размеры и обладающая большим запасом питательных веществ. Он проходит в два этапа:
- редукционный, когда набор хромосом удваивается и созданные новые клетки получают половинчатый набор;
- эквационный, в ходе которого получившиеся клетки снова разделяются без предварительного удвоения ДНК. Он сходен с первым этапом, но имеет свои отличительные особенности. В его ходе к полюсам расходятся получившиеся на первом этапе сестринские хромосомы-тетрады.
Происходит мейоз только в соматических клетках, не участвующих в процессе размножения, которые имеют двойной, диплоидный, набор хромосом. Либо – в полиплоидных четных клетках. Этот вид мейоза присущ растениям и представляет собой наследственные изменения клеток, при котором основной набор числа хромосом кратно удваивается. Обычно такие растения крупнее, легче приспосабливаются к изменениям окружающей среды, более выносливы и меньше болеют.
Литература[]
- Бабынин Э. В. Молекулярный механизм гомологичной рекомбинации в мейозе: происхождение и биологическое значение. Цитология, 2007, 49, N 3, 182—193.
- Александр Марков. На пути к разгадке тайны мейоза. По статье: Ю. Ф. Богданов. Эволюция мейоза одноклеточных и многоклеточных эукариот. Ароморфоз на клеточном уровне. Журнал общей биологии, Том 69, 2008. № 2, Март-Апрель. Стр. 102—117
- «Variation and evolution of meiosis» — Ю. Ф. Богданов, 2003
- Биология :Пособия для поступающих в вузы: В 2 т. Т.1.-Б63 2-е изд., испр. и доп.-М.:РИА «Новая волна»: Издатель Умеренков,2011.-500с.
| Выделить Мейоз и найти в:
|
|
|
- Страница – краткая статья
- Страница 1 – энциклопедическая статья
- Разное – на страницах: 2 , 3 , 4 , 5
- Прошу вносить вашу информацию в «Мейоз 1», чтобы сохранить ее
Биологическая роль мейоза
По сути мейоз – способ деления клетки, благодаря которому, из одной клетки с двойным набором хромосом образуют целых четыре клетки с гаплоидным набором. Еще в чем заключена сущность мейоза, так это в том, что этот механизм препятствуют непременному увеличению хромосом в клетке при слиянии гамет. Если бы мейотического деления не существовало и половые клетки имели как и все прочие клетки тела двойной хромосомный набор, и при половом размножении количество хромосом удваивалось в каждом поколении.
В чем заключается сущность мейоза, так это в том, что благодаря ему у гамет появляется большое разнообразие генетического состава. Достигается оно в процессе кроссинговера (обмена участками хромосом), так и в результате случайного сочетания хромосом матери и отца при их разном независимом расхождении к полюсам в анафазе I. Можно подвести итог и сказать, что значение мейоза сводится к появлению разного потомства с разнообразными качествами и признаками при половом размножении. Существование этого процесса обуславливает существование полового размножения, которое в эволюционном плане является более перспективным, чем бесполое. Благодаря половому размножению могут появляться новые признаки у видов, новые виды растений и животных.
Отличие мейоза от митоза
Мейоз и митоз – кардинально отличающиеся друг от друга процессы. Да, это деление клеток, но принципы и последствия у них различны.
- Митоз – это наиболее распространенный в живых организмах процесс деления клеток. При этом, образуются генетически полностью идентичные друг другу клетки.
- Генетический материал равномерно распределяется по новым клеткам, обеспечивая преемственность базовой информации и структуры клеток.
- Дочерние клетки образовываются из материнской и полностью ее дублируют.
- С помощью митоза организм растет, залечивает повреждения, развивается, не изменяя своих врожденных характеристик.
- С помощью митоза происходит бесполое размножение организмов: почкование, вегетативное размножение, фрагментация, спороношение.
- Соматические клетки также делятся митозным способом, обеспечивая рост и сохранение изначального строения организма.
Основное различие мейоза и митоза – в процессе последнего информация ДНК, присутствующая в материнской клетке, полностью дублируется, без каких-либо изменений.